履带式机器人的神经网络控制系统

T. Kuzmina, G. Dubrovskiy
{"title":"履带式机器人的神经网络控制系统","authors":"T. Kuzmina, G. Dubrovskiy","doi":"10.1109/EICONRUSNW.2015.7102268","DOIUrl":null,"url":null,"abstract":"In this paper the designing of a tracked robot's neural network control system is considered. The control system embodies a black line following algorithm, which is using two infrared reflector sensors for black line recognition. The neural network regulator is designed in Matlab/Simulink using the Real-Time Windows Target Toolbox. With the purpose of the neural network regulator training, course passage results of the robot with a fuzzy regulator are used.","PeriodicalId":268759,"journal":{"name":"2015 IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conference (EIConRusNW)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Neural network control system for a tracked robot\",\"authors\":\"T. Kuzmina, G. Dubrovskiy\",\"doi\":\"10.1109/EICONRUSNW.2015.7102268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper the designing of a tracked robot's neural network control system is considered. The control system embodies a black line following algorithm, which is using two infrared reflector sensors for black line recognition. The neural network regulator is designed in Matlab/Simulink using the Real-Time Windows Target Toolbox. With the purpose of the neural network regulator training, course passage results of the robot with a fuzzy regulator are used.\",\"PeriodicalId\":268759,\"journal\":{\"name\":\"2015 IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conference (EIConRusNW)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conference (EIConRusNW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EICONRUSNW.2015.7102268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conference (EIConRusNW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EICONRUSNW.2015.7102268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了履带式机器人神经网络控制系统的设计。控制系统采用黑线跟踪算法,利用两个红外反射传感器对黑线进行识别。神经网络调节器在Matlab/Simulink中使用实时Windows目标工具箱进行设计。以神经网络调节器训练为目的,利用带有模糊调节器的机器人的路线通过结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural network control system for a tracked robot
In this paper the designing of a tracked robot's neural network control system is considered. The control system embodies a black line following algorithm, which is using two infrared reflector sensors for black line recognition. The neural network regulator is designed in Matlab/Simulink using the Real-Time Windows Target Toolbox. With the purpose of the neural network regulator training, course passage results of the robot with a fuzzy regulator are used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信