随机不可逆投资问题自由边界的积分方程

Giorgio Ferrari
{"title":"随机不可逆投资问题自由边界的积分方程","authors":"Giorgio Ferrari","doi":"10.1214/13-AAP991","DOIUrl":null,"url":null,"abstract":"In this paper, we derive a new handy integral equation for the free-boundary of infinite time horizon, continuous time, stochastic, irreversible investment problems with uncertainty modeled as a one-dimensional, regular diffusion $X$. The new integral equation allows to explicitly find the free-boundary $b(\\cdot)$ in some so far unsolved cases, as when the operating profit function is not multiplicatively separable and $X$ is a three-dimensional Bessel process or a CEV process. Our result follows from purely probabilistic arguments. Indeed, we first show that $b(X(t))=l^*(t)$, with $l^*$ the unique optional solution of a representation problem in the spirit of Bank-El Karoui [Ann. Probab. 32 (2004) 1030-1067]; then, thanks to such an identification and the fact that $l^*$ uniquely solves a backward stochastic equation, we find the integral problem for the free-boundary.","PeriodicalId":286833,"journal":{"name":"arXiv: Portfolio Management","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"On an integral equation for the free-boundary of stochastic, irreversible investment problems\",\"authors\":\"Giorgio Ferrari\",\"doi\":\"10.1214/13-AAP991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we derive a new handy integral equation for the free-boundary of infinite time horizon, continuous time, stochastic, irreversible investment problems with uncertainty modeled as a one-dimensional, regular diffusion $X$. The new integral equation allows to explicitly find the free-boundary $b(\\\\cdot)$ in some so far unsolved cases, as when the operating profit function is not multiplicatively separable and $X$ is a three-dimensional Bessel process or a CEV process. Our result follows from purely probabilistic arguments. Indeed, we first show that $b(X(t))=l^*(t)$, with $l^*$ the unique optional solution of a representation problem in the spirit of Bank-El Karoui [Ann. Probab. 32 (2004) 1030-1067]; then, thanks to such an identification and the fact that $l^*$ uniquely solves a backward stochastic equation, we find the integral problem for the free-boundary.\",\"PeriodicalId\":286833,\"journal\":{\"name\":\"arXiv: Portfolio Management\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Portfolio Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/13-AAP991\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Portfolio Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/13-AAP991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文导出了一个新的方便的积分方程,用于求解具有不确定性的无限时间视界、连续时间、随机、不可逆投资问题的自由边界,该问题被建模为一维正则扩散$X$。新的积分方程允许在一些迄今尚未解决的情况下显式地找到自由边界$b(\cdot)$,例如当营业利润函数不可乘分离并且$X$是三维贝塞尔过程或CEV过程时。我们的结果是由纯概率论证得出的。事实上,我们首先证明了$b(X(t))=l^*(t)$,其中$l^*$是Bank-El Karoui [Ann]精神中表示问题的唯一可选解。可能32 (2004)1030-1067];然后,利用这种辨识和$l^*$唯一解倒向随机方程的事实,我们找到了自由边界的积分问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On an integral equation for the free-boundary of stochastic, irreversible investment problems
In this paper, we derive a new handy integral equation for the free-boundary of infinite time horizon, continuous time, stochastic, irreversible investment problems with uncertainty modeled as a one-dimensional, regular diffusion $X$. The new integral equation allows to explicitly find the free-boundary $b(\cdot)$ in some so far unsolved cases, as when the operating profit function is not multiplicatively separable and $X$ is a three-dimensional Bessel process or a CEV process. Our result follows from purely probabilistic arguments. Indeed, we first show that $b(X(t))=l^*(t)$, with $l^*$ the unique optional solution of a representation problem in the spirit of Bank-El Karoui [Ann. Probab. 32 (2004) 1030-1067]; then, thanks to such an identification and the fact that $l^*$ uniquely solves a backward stochastic equation, we find the integral problem for the free-boundary.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信