小分量分析(MCA)在CBIR图像分类中的应用

M. Jankovic, G. Zajic, V. Radosavljevic, N. Kojić, N. Reljin, M. Rudinac, S. Rudinac, B. Reljin
{"title":"小分量分析(MCA)在CBIR图像分类中的应用","authors":"M. Jankovic, G. Zajic, V. Radosavljevic, N. Kojić, N. Reljin, M. Rudinac, S. Rudinac, B. Reljin","doi":"10.1109/NEUREL.2006.341164","DOIUrl":null,"url":null,"abstract":"A content-based image retrieval system with query image classification prior to retrieving procedure is proposed. Query image is compared to representative patterns of image classes, not to all images from database, accelerating thus initial retrieving step. Such procedure is possible when images from database are grouped into classes with similar content. Classification is performed using minor component (MC) analysis. Since it is expectable that MCs mainly depend on image details, not on an image background, this approach seems to be more efficient than classic CBIR. Minor components may be calculated by using single-layer neural network. The efficiency of proposed system is tested over images from Corel dataset","PeriodicalId":231606,"journal":{"name":"2006 8th Seminar on Neural Network Applications in Electrical Engineering","volume":"117 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Minor Component Analysis (MCA) Applied to Image Classification in CBIR Systems\",\"authors\":\"M. Jankovic, G. Zajic, V. Radosavljevic, N. Kojić, N. Reljin, M. Rudinac, S. Rudinac, B. Reljin\",\"doi\":\"10.1109/NEUREL.2006.341164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A content-based image retrieval system with query image classification prior to retrieving procedure is proposed. Query image is compared to representative patterns of image classes, not to all images from database, accelerating thus initial retrieving step. Such procedure is possible when images from database are grouped into classes with similar content. Classification is performed using minor component (MC) analysis. Since it is expectable that MCs mainly depend on image details, not on an image background, this approach seems to be more efficient than classic CBIR. Minor components may be calculated by using single-layer neural network. The efficiency of proposed system is tested over images from Corel dataset\",\"PeriodicalId\":231606,\"journal\":{\"name\":\"2006 8th Seminar on Neural Network Applications in Electrical Engineering\",\"volume\":\"117 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 8th Seminar on Neural Network Applications in Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEUREL.2006.341164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 8th Seminar on Neural Network Applications in Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2006.341164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

提出了一种基于内容的图像检索系统,在检索过程之前对图像进行查询分类。查询图像与图像类的代表性模式进行比较,而不是与数据库中的所有图像进行比较,从而加快了初始检索步骤。当将数据库中的图像分组为具有相似内容的类时,这种过程是可能的。使用小分量(MC)分析进行分类。由于mc主要依赖于图像细节,而不是图像背景,因此这种方法似乎比经典的CBIR更有效。小分量可以用单层神经网络计算。在Corel数据集的图像上测试了该系统的效率
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minor Component Analysis (MCA) Applied to Image Classification in CBIR Systems
A content-based image retrieval system with query image classification prior to retrieving procedure is proposed. Query image is compared to representative patterns of image classes, not to all images from database, accelerating thus initial retrieving step. Such procedure is possible when images from database are grouped into classes with similar content. Classification is performed using minor component (MC) analysis. Since it is expectable that MCs mainly depend on image details, not on an image background, this approach seems to be more efficient than classic CBIR. Minor components may be calculated by using single-layer neural network. The efficiency of proposed system is tested over images from Corel dataset
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信