基于Simulink的模型驱动空间机器人软件的随机误差传播分析

MORSE '16 Pub Date : 2016-07-01 DOI:10.1145/3022099.3022103
A. Morozov, K. Janschek, T. Krüger, A. Schiele
{"title":"基于Simulink的模型驱动空间机器人软件的随机误差传播分析","authors":"A. Morozov, K. Janschek, T. Krüger, A. Schiele","doi":"10.1145/3022099.3022103","DOIUrl":null,"url":null,"abstract":"Model-driven software development methods are widely used in safety-critical domains including space robotics. The MATLAB Simulink environment is the common choice of control engineers. This article introduces a new method for a fully automatic transformation of a Simulink model to a dual-graph model for stochastic error propagation analysis. The error propagation analysis provides important inputs for system reliability methods, required by industrial standards such as FTA and FMEA. The dual-graph error propagation model is a mathematical abstraction of key system design aspects that influence error propagation processes: control flow, data flow, and component-level reliability properties. This model helps to estimate the likelihood of error propagation to hazardous system parts and quantify the negative impact of a fault in a particular component on the overall system reliability. In praxis, the manual creation of an error propagation model of a complex system requires a huge effort. The transformation method, introduced in this article, is a fast and promising solution. The method is demonstrated as a part of a stochastic analysis of a real-world model-driven space robotic software.","PeriodicalId":361389,"journal":{"name":"MORSE '16","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Stochastic Error Propagation Analysis of Model-driven Space Robotic Software Implemented in Simulink\",\"authors\":\"A. Morozov, K. Janschek, T. Krüger, A. Schiele\",\"doi\":\"10.1145/3022099.3022103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Model-driven software development methods are widely used in safety-critical domains including space robotics. The MATLAB Simulink environment is the common choice of control engineers. This article introduces a new method for a fully automatic transformation of a Simulink model to a dual-graph model for stochastic error propagation analysis. The error propagation analysis provides important inputs for system reliability methods, required by industrial standards such as FTA and FMEA. The dual-graph error propagation model is a mathematical abstraction of key system design aspects that influence error propagation processes: control flow, data flow, and component-level reliability properties. This model helps to estimate the likelihood of error propagation to hazardous system parts and quantify the negative impact of a fault in a particular component on the overall system reliability. In praxis, the manual creation of an error propagation model of a complex system requires a huge effort. The transformation method, introduced in this article, is a fast and promising solution. The method is demonstrated as a part of a stochastic analysis of a real-world model-driven space robotic software.\",\"PeriodicalId\":361389,\"journal\":{\"name\":\"MORSE '16\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MORSE '16\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3022099.3022103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MORSE '16","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3022099.3022103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

模型驱动软件开发方法广泛应用于包括空间机器人在内的安全关键领域。MATLAB Simulink环境是控制工程师的常用选择。本文介绍了一种将Simulink模型自动转换为双图模型的新方法,用于随机误差传播分析。误差传播分析为FTA和FMEA等工业标准所要求的系统可靠性方法提供了重要的输入。双图错误传播模型是影响错误传播过程的关键系统设计方面的数学抽象:控制流、数据流和组件级可靠性属性。该模型有助于估计错误传播到危险系统部件的可能性,并量化特定部件故障对整个系统可靠性的负面影响。在实践中,人工创建复杂系统的误差传播模型需要付出巨大的努力。本文介绍的变换方法是一种快速而有前途的解决方法。该方法作为现实世界模型驱动空间机器人软件的随机分析的一部分进行了演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic Error Propagation Analysis of Model-driven Space Robotic Software Implemented in Simulink
Model-driven software development methods are widely used in safety-critical domains including space robotics. The MATLAB Simulink environment is the common choice of control engineers. This article introduces a new method for a fully automatic transformation of a Simulink model to a dual-graph model for stochastic error propagation analysis. The error propagation analysis provides important inputs for system reliability methods, required by industrial standards such as FTA and FMEA. The dual-graph error propagation model is a mathematical abstraction of key system design aspects that influence error propagation processes: control flow, data flow, and component-level reliability properties. This model helps to estimate the likelihood of error propagation to hazardous system parts and quantify the negative impact of a fault in a particular component on the overall system reliability. In praxis, the manual creation of an error propagation model of a complex system requires a huge effort. The transformation method, introduced in this article, is a fast and promising solution. The method is demonstrated as a part of a stochastic analysis of a real-world model-driven space robotic software.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信