{"title":"大型广域网拓扑中流量的多变量时间序列预测","authors":"Bashir Mohammed, Nandini Krishnaswamy, M. Kiran","doi":"10.1109/ANCS.2019.8901870","DOIUrl":null,"url":null,"abstract":"Network traffic behavior is noisy and random, making it difficult to find patterns and predict future behavior. In this paper, we develop statistical models that use multivariate data model, incorporating seasonality, peak frequencies, and link relationships to improve future predictions. Using Fourier Transforms to extract seasons and peak frequencies from individual traces, we perform seasonality tests and ARIMA measures to determine optimal parameters to use in our prediction model. We develop a SARIMA multivariate model using real network traces to show improved prediction accuracy with better RMSE and smaller confidence intervals when compared to univariate approaches.","PeriodicalId":405320,"journal":{"name":"2019 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multivariate Time-Series Prediction for Traffic in Large WAN Topology\",\"authors\":\"Bashir Mohammed, Nandini Krishnaswamy, M. Kiran\",\"doi\":\"10.1109/ANCS.2019.8901870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network traffic behavior is noisy and random, making it difficult to find patterns and predict future behavior. In this paper, we develop statistical models that use multivariate data model, incorporating seasonality, peak frequencies, and link relationships to improve future predictions. Using Fourier Transforms to extract seasons and peak frequencies from individual traces, we perform seasonality tests and ARIMA measures to determine optimal parameters to use in our prediction model. We develop a SARIMA multivariate model using real network traces to show improved prediction accuracy with better RMSE and smaller confidence intervals when compared to univariate approaches.\",\"PeriodicalId\":405320,\"journal\":{\"name\":\"2019 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANCS.2019.8901870\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANCS.2019.8901870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multivariate Time-Series Prediction for Traffic in Large WAN Topology
Network traffic behavior is noisy and random, making it difficult to find patterns and predict future behavior. In this paper, we develop statistical models that use multivariate data model, incorporating seasonality, peak frequencies, and link relationships to improve future predictions. Using Fourier Transforms to extract seasons and peak frequencies from individual traces, we perform seasonality tests and ARIMA measures to determine optimal parameters to use in our prediction model. We develop a SARIMA multivariate model using real network traces to show improved prediction accuracy with better RMSE and smaller confidence intervals when compared to univariate approaches.