使用FMA进行浮点除法的牛顿-拉夫逊算法

N. Louvet, J. Muller, A. Panhaleux
{"title":"使用FMA进行浮点除法的牛顿-拉夫逊算法","authors":"N. Louvet, J. Muller, A. Panhaleux","doi":"10.1109/ASAP.2010.5540948","DOIUrl":null,"url":null,"abstract":"Since the introduction of the Fused Multiply and Add (FMA) in the IEEE-754-2008 standard [6] for floatingpoint arithmetic, division based on Newton-Raphson's iterations becomes a viable alternative to SRT-based divisions. The Newton-Raphson iterations were already used in some architecture prior to the revision of the IEEE-754 norm. For example, Itanium architecture already used this kind of iterations [8]. Unfortunately, the proofs of the correctness of binary algorithms do not extend to the case of decimal floating-point arithmetic. In this paper, we present general methods to prove the correct rounding of division algorithms using Newton-Raphson's iterations in software, for radix 2 and radix 10 floating-point arithmetic.","PeriodicalId":175846,"journal":{"name":"ASAP 2010 - 21st IEEE International Conference on Application-specific Systems, Architectures and Processors","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Newton-Raphson algorithms for floating-point division using an FMA\",\"authors\":\"N. Louvet, J. Muller, A. Panhaleux\",\"doi\":\"10.1109/ASAP.2010.5540948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since the introduction of the Fused Multiply and Add (FMA) in the IEEE-754-2008 standard [6] for floatingpoint arithmetic, division based on Newton-Raphson's iterations becomes a viable alternative to SRT-based divisions. The Newton-Raphson iterations were already used in some architecture prior to the revision of the IEEE-754 norm. For example, Itanium architecture already used this kind of iterations [8]. Unfortunately, the proofs of the correctness of binary algorithms do not extend to the case of decimal floating-point arithmetic. In this paper, we present general methods to prove the correct rounding of division algorithms using Newton-Raphson's iterations in software, for radix 2 and radix 10 floating-point arithmetic.\",\"PeriodicalId\":175846,\"journal\":{\"name\":\"ASAP 2010 - 21st IEEE International Conference on Application-specific Systems, Architectures and Processors\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASAP 2010 - 21st IEEE International Conference on Application-specific Systems, Architectures and Processors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASAP.2010.5540948\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASAP 2010 - 21st IEEE International Conference on Application-specific Systems, Architectures and Processors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASAP.2010.5540948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

自从在IEEE-754-2008浮点运算标准[6]中引入融合乘法和加法(FMA)以来,基于牛顿-拉夫森迭代的除法成为基于srt的除法的可行替代方案。在IEEE-754标准修订之前,Newton-Raphson迭代已经在一些架构中使用。例如,Itanium架构已经使用了这种迭代[8]。不幸的是,对二进制算法正确性的证明不能扩展到十进制浮点运算的情况。本文给出了用Newton-Raphson迭代法在软件中证明基数为2和基数为10的浮点运算除法算法舍入正确的一般方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Newton-Raphson algorithms for floating-point division using an FMA
Since the introduction of the Fused Multiply and Add (FMA) in the IEEE-754-2008 standard [6] for floatingpoint arithmetic, division based on Newton-Raphson's iterations becomes a viable alternative to SRT-based divisions. The Newton-Raphson iterations were already used in some architecture prior to the revision of the IEEE-754 norm. For example, Itanium architecture already used this kind of iterations [8]. Unfortunately, the proofs of the correctness of binary algorithms do not extend to the case of decimal floating-point arithmetic. In this paper, we present general methods to prove the correct rounding of division algorithms using Newton-Raphson's iterations in software, for radix 2 and radix 10 floating-point arithmetic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信