{"title":"基于代理的加州电力市场系统:近视眼机器学习的视角","authors":"T. Sueyoshi, G. R. Tadiparthi","doi":"10.1109/ICMLA.2007.83","DOIUrl":null,"url":null,"abstract":"In recent years, an agent based system is widely adopted to model a deregulated electricity market. [1] and [2] have developed a multi-agent intelligent simulator (MAIS) to model the structure of US wholesale market. The methodological practicality was confirmed with a simulation study and a real data set from PJM electricity market. In our proposed artificial wholesale market, the agents are equipped with limited reinforcement learning capabilities. We validate the agent based model with the help of six data sets from the California electricity market. The performance of the MAIS is compared with other well-known methods, using a real data set on power trading related to the California electricity (2000-2001).","PeriodicalId":448863,"journal":{"name":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An agent based system for california electricity market: a perspective of myopic machine learning\",\"authors\":\"T. Sueyoshi, G. R. Tadiparthi\",\"doi\":\"10.1109/ICMLA.2007.83\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, an agent based system is widely adopted to model a deregulated electricity market. [1] and [2] have developed a multi-agent intelligent simulator (MAIS) to model the structure of US wholesale market. The methodological practicality was confirmed with a simulation study and a real data set from PJM electricity market. In our proposed artificial wholesale market, the agents are equipped with limited reinforcement learning capabilities. We validate the agent based model with the help of six data sets from the California electricity market. The performance of the MAIS is compared with other well-known methods, using a real data set on power trading related to the California electricity (2000-2001).\",\"PeriodicalId\":448863,\"journal\":{\"name\":\"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2007.83\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2007.83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An agent based system for california electricity market: a perspective of myopic machine learning
In recent years, an agent based system is widely adopted to model a deregulated electricity market. [1] and [2] have developed a multi-agent intelligent simulator (MAIS) to model the structure of US wholesale market. The methodological practicality was confirmed with a simulation study and a real data set from PJM electricity market. In our proposed artificial wholesale market, the agents are equipped with limited reinforcement learning capabilities. We validate the agent based model with the help of six data sets from the California electricity market. The performance of the MAIS is compared with other well-known methods, using a real data set on power trading related to the California electricity (2000-2001).