{"title":"基于脑电信号的认知负荷测量","authors":"Tasmi Tamanna, M. Parvez","doi":"10.5772/INTECHOPEN.96388","DOIUrl":null,"url":null,"abstract":"Measurement of cognitive load should be advantageous in designing an intelligent navigation system for the visually impaired people (VIPs) when navigating unfamiliar indoor environments. Electroencephalogram (EEG) can offer neurophysiological indicators of perceptive process indicated by changes in brain rhythmic activity. To support the cognitive load measurement by means of EEG signals, the complexity of the tasks of the VIPs during navigating unfamiliar indoor environments is quantified considering diverse factors of well-established signal processing and machine learning methods. This chapter describes the measurement of cognitive load based on EEG signals analysis with its existing literatures, background, scopes, features, and machine learning techniques.","PeriodicalId":249832,"journal":{"name":"The Science of Emotional Intelligence [Working Title]","volume":"1564 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cognitive Load Measurement Based on EEG Signals\",\"authors\":\"Tasmi Tamanna, M. Parvez\",\"doi\":\"10.5772/INTECHOPEN.96388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Measurement of cognitive load should be advantageous in designing an intelligent navigation system for the visually impaired people (VIPs) when navigating unfamiliar indoor environments. Electroencephalogram (EEG) can offer neurophysiological indicators of perceptive process indicated by changes in brain rhythmic activity. To support the cognitive load measurement by means of EEG signals, the complexity of the tasks of the VIPs during navigating unfamiliar indoor environments is quantified considering diverse factors of well-established signal processing and machine learning methods. This chapter describes the measurement of cognitive load based on EEG signals analysis with its existing literatures, background, scopes, features, and machine learning techniques.\",\"PeriodicalId\":249832,\"journal\":{\"name\":\"The Science of Emotional Intelligence [Working Title]\",\"volume\":\"1564 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Science of Emotional Intelligence [Working Title]\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.96388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Science of Emotional Intelligence [Working Title]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.96388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Measurement of cognitive load should be advantageous in designing an intelligent navigation system for the visually impaired people (VIPs) when navigating unfamiliar indoor environments. Electroencephalogram (EEG) can offer neurophysiological indicators of perceptive process indicated by changes in brain rhythmic activity. To support the cognitive load measurement by means of EEG signals, the complexity of the tasks of the VIPs during navigating unfamiliar indoor environments is quantified considering diverse factors of well-established signal processing and machine learning methods. This chapter describes the measurement of cognitive load based on EEG signals analysis with its existing literatures, background, scopes, features, and machine learning techniques.