点云的层次PCA分解

J. Fransens, F. Reeth
{"title":"点云的层次PCA分解","authors":"J. Fransens, F. Reeth","doi":"10.1109/3DPVT.2006.72","DOIUrl":null,"url":null,"abstract":"We present a hierarchical, analysis technique for point clouds, based on principal component analysis (PCA), a well known multivariate statistical method. The crux of the algorithm is a top-down planarity assessment of the underlying point data, after which individual planar patches are merged using a tree clustering technique. We will demonstrate how the results of this analysis are used as a preprocessing step for computer aided inspection of sheet metal folding, surface reconstruction and a hybrid point- polygon rendering algorithm.","PeriodicalId":346673,"journal":{"name":"Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT'06)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Hierarchical PCA Decomposition of Point Clouds\",\"authors\":\"J. Fransens, F. Reeth\",\"doi\":\"10.1109/3DPVT.2006.72\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a hierarchical, analysis technique for point clouds, based on principal component analysis (PCA), a well known multivariate statistical method. The crux of the algorithm is a top-down planarity assessment of the underlying point data, after which individual planar patches are merged using a tree clustering technique. We will demonstrate how the results of this analysis are used as a preprocessing step for computer aided inspection of sheet metal folding, surface reconstruction and a hybrid point- polygon rendering algorithm.\",\"PeriodicalId\":346673,\"journal\":{\"name\":\"Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT'06)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3DPVT.2006.72\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DPVT.2006.72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

我们提出了一种基于主成分分析(PCA)的点云分层分析技术,这是一种众所周知的多元统计方法。该算法的核心是对底层点数据进行自顶向下的平面性评估,然后使用树聚类技术合并单个平面补丁。我们将演示如何将此分析结果用作计算机辅助检查钣金折叠,表面重建和混合点多边形渲染算法的预处理步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical PCA Decomposition of Point Clouds
We present a hierarchical, analysis technique for point clouds, based on principal component analysis (PCA), a well known multivariate statistical method. The crux of the algorithm is a top-down planarity assessment of the underlying point data, after which individual planar patches are merged using a tree clustering technique. We will demonstrate how the results of this analysis are used as a preprocessing step for computer aided inspection of sheet metal folding, surface reconstruction and a hybrid point- polygon rendering algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信