细胞合流度测量的不确定度

G. Sassi, S. Pavarelli, C. Divieto, M. Sassi
{"title":"细胞合流度测量的不确定度","authors":"G. Sassi, S. Pavarelli, C. Divieto, M. Sassi","doi":"10.1109/MeMeA.2015.7145279","DOIUrl":null,"url":null,"abstract":"Pharmaceutical industries have declared their need of metrology in the cellular field, to improve new drugs developing time and costs by high-content screening technologies. Cell viability and proliferation tests largely use confluency of cells on a bi-dimensional (2D) surface as a biological measurand. The confluency is measured from images of 2D surface acquired via microscopy techniques. The plethora of algorithms already in use aims at recognizing objects from images and identifies a threshold to distinguish objects from the background. The reference method is the visual assessment from an operator and any objective uncertainty estimation is not yet available. A method to estimate the image analysis contribution to confluency uncertainty is here proposed. A maximum and a minimum threshold are identified from a visual assessment of the free edge of the cells. An application to a fluorescence microscopy image of 2D of PT-45 cell cultures is reported. Results shows that the method can be a promising solution to associate an uncertainty to cell confluency measurements to enhance reliability and efficiency of high-content screening technologies.","PeriodicalId":277757,"journal":{"name":"2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Uncertainty in cell confluency measurements\",\"authors\":\"G. Sassi, S. Pavarelli, C. Divieto, M. Sassi\",\"doi\":\"10.1109/MeMeA.2015.7145279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pharmaceutical industries have declared their need of metrology in the cellular field, to improve new drugs developing time and costs by high-content screening technologies. Cell viability and proliferation tests largely use confluency of cells on a bi-dimensional (2D) surface as a biological measurand. The confluency is measured from images of 2D surface acquired via microscopy techniques. The plethora of algorithms already in use aims at recognizing objects from images and identifies a threshold to distinguish objects from the background. The reference method is the visual assessment from an operator and any objective uncertainty estimation is not yet available. A method to estimate the image analysis contribution to confluency uncertainty is here proposed. A maximum and a minimum threshold are identified from a visual assessment of the free edge of the cells. An application to a fluorescence microscopy image of 2D of PT-45 cell cultures is reported. Results shows that the method can be a promising solution to associate an uncertainty to cell confluency measurements to enhance reliability and efficiency of high-content screening technologies.\",\"PeriodicalId\":277757,\"journal\":{\"name\":\"2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MeMeA.2015.7145279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MeMeA.2015.7145279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

制药行业已经宣布他们需要计量在细胞领域,以提高新药开发时间和成本的高含量筛选技术。细胞活力和增殖测试主要使用细胞在二维(2D)表面上的合流性作为生物学测量。通过显微镜技术获得的二维表面图像来测量合流度。已经使用的大量算法旨在从图像中识别物体,并确定将物体与背景区分开来的阈值。参考方法是操作员的目视评估,目前还没有任何客观的不确定性估计。本文提出了一种估计图像分析对融合不确定度贡献的方法。最大和最小阈值是通过对单元的自由边缘的视觉评估来确定的。本文报道了PT-45细胞培养物二维荧光显微图像的应用。结果表明,该方法可以将不确定度与细胞合流度测量联系起来,以提高高含量筛选技术的可靠性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uncertainty in cell confluency measurements
Pharmaceutical industries have declared their need of metrology in the cellular field, to improve new drugs developing time and costs by high-content screening technologies. Cell viability and proliferation tests largely use confluency of cells on a bi-dimensional (2D) surface as a biological measurand. The confluency is measured from images of 2D surface acquired via microscopy techniques. The plethora of algorithms already in use aims at recognizing objects from images and identifies a threshold to distinguish objects from the background. The reference method is the visual assessment from an operator and any objective uncertainty estimation is not yet available. A method to estimate the image analysis contribution to confluency uncertainty is here proposed. A maximum and a minimum threshold are identified from a visual assessment of the free edge of the cells. An application to a fluorescence microscopy image of 2D of PT-45 cell cultures is reported. Results shows that the method can be a promising solution to associate an uncertainty to cell confluency measurements to enhance reliability and efficiency of high-content screening technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信