Jingyong Su, Zhiqiang Zhu, Anuj Srivastava, F. Huffer
{"title":"由图像生成的二维点云的形状检测","authors":"Jingyong Su, Zhiqiang Zhu, Anuj Srivastava, F. Huffer","doi":"10.1109/ICPR.2010.647","DOIUrl":null,"url":null,"abstract":"We present a novel statistical framework for detecting pre-determined shape classes in 2D cluttered point clouds, which are in turn extracted from images. In this model based approach, we use a 1D Poisson process for sampling points on shapes, a 2D Poisson process for points from background clutter, and an additive Gaussian model for noise. Combining these with a past stochastic model on shapes of continuous 2D contours, and optimization over unknown pose and scale, we develop a generalized likelihood ratio test for shape detection. We demonstrate the efficiency of this method and its robustness to clutter using both simulated and real data.","PeriodicalId":309591,"journal":{"name":"2010 20th International Conference on Pattern Recognition","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Detection of Shapes in 2D Point Clouds Generated from Images\",\"authors\":\"Jingyong Su, Zhiqiang Zhu, Anuj Srivastava, F. Huffer\",\"doi\":\"10.1109/ICPR.2010.647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel statistical framework for detecting pre-determined shape classes in 2D cluttered point clouds, which are in turn extracted from images. In this model based approach, we use a 1D Poisson process for sampling points on shapes, a 2D Poisson process for points from background clutter, and an additive Gaussian model for noise. Combining these with a past stochastic model on shapes of continuous 2D contours, and optimization over unknown pose and scale, we develop a generalized likelihood ratio test for shape detection. We demonstrate the efficiency of this method and its robustness to clutter using both simulated and real data.\",\"PeriodicalId\":309591,\"journal\":{\"name\":\"2010 20th International Conference on Pattern Recognition\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 20th International Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2010.647\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 20th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2010.647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Detection of Shapes in 2D Point Clouds Generated from Images
We present a novel statistical framework for detecting pre-determined shape classes in 2D cluttered point clouds, which are in turn extracted from images. In this model based approach, we use a 1D Poisson process for sampling points on shapes, a 2D Poisson process for points from background clutter, and an additive Gaussian model for noise. Combining these with a past stochastic model on shapes of continuous 2D contours, and optimization over unknown pose and scale, we develop a generalized likelihood ratio test for shape detection. We demonstrate the efficiency of this method and its robustness to clutter using both simulated and real data.