基于卷积VRNN的未来帧预测异常检测

Yiwei Lu, Mahesh Kumar Krishna Reddy, Seyed shahabeddin Nabavi, Yang Wang
{"title":"基于卷积VRNN的未来帧预测异常检测","authors":"Yiwei Lu, Mahesh Kumar Krishna Reddy, Seyed shahabeddin Nabavi, Yang Wang","doi":"10.1109/AVSS.2019.8909850","DOIUrl":null,"url":null,"abstract":"Anomaly detection in videos aims at reporting anything that does not conform the normal behaviour or distribution. However, due to the sparsity of abnormal video clips in real life, collecting annotated data for supervised learning is exceptionally cumbersome. Inspired by the practicability of generative models for semi-supervised learning, we propose a novel sequential generative model based on variational autoencoder (VAE) for future frame prediction with convolutional LSTM (ConvLSTM). To the best of our knowledge, this is the first work that considers temporal information in future frame prediction based anomaly detection framework from the model perspective. Our experiments demonstrate that our approach is superior to the state-of-the-art methods on three benchmark datasets.","PeriodicalId":243194,"journal":{"name":"2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"71","resultStr":"{\"title\":\"Future Frame Prediction Using Convolutional VRNN for Anomaly Detection\",\"authors\":\"Yiwei Lu, Mahesh Kumar Krishna Reddy, Seyed shahabeddin Nabavi, Yang Wang\",\"doi\":\"10.1109/AVSS.2019.8909850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anomaly detection in videos aims at reporting anything that does not conform the normal behaviour or distribution. However, due to the sparsity of abnormal video clips in real life, collecting annotated data for supervised learning is exceptionally cumbersome. Inspired by the practicability of generative models for semi-supervised learning, we propose a novel sequential generative model based on variational autoencoder (VAE) for future frame prediction with convolutional LSTM (ConvLSTM). To the best of our knowledge, this is the first work that considers temporal information in future frame prediction based anomaly detection framework from the model perspective. Our experiments demonstrate that our approach is superior to the state-of-the-art methods on three benchmark datasets.\",\"PeriodicalId\":243194,\"journal\":{\"name\":\"2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"71\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AVSS.2019.8909850\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2019.8909850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 71

摘要

视频中的异常检测旨在报告任何不符合正常行为或分布的东西。然而,由于现实生活中异常视频片段的稀疏性,收集带注释的数据进行监督学习是非常繁琐的。受生成模型在半监督学习中实用性的启发,我们提出了一种基于变分自编码器(VAE)的序列生成模型,用于卷积LSTM (ConvLSTM)的未来帧预测。据我们所知,这是第一个从模型角度考虑基于未来帧预测的异常检测框架中时间信息的工作。我们的实验表明,我们的方法在三个基准数据集上优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Future Frame Prediction Using Convolutional VRNN for Anomaly Detection
Anomaly detection in videos aims at reporting anything that does not conform the normal behaviour or distribution. However, due to the sparsity of abnormal video clips in real life, collecting annotated data for supervised learning is exceptionally cumbersome. Inspired by the practicability of generative models for semi-supervised learning, we propose a novel sequential generative model based on variational autoencoder (VAE) for future frame prediction with convolutional LSTM (ConvLSTM). To the best of our knowledge, this is the first work that considers temporal information in future frame prediction based anomaly detection framework from the model perspective. Our experiments demonstrate that our approach is superior to the state-of-the-art methods on three benchmark datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信