双向准z源逆变器馈入永磁同步电机驱动的直接模型预测控制

A. Ayad, P. Karamanakos, R. Kennel, José R. Rodríguez
{"title":"双向准z源逆变器馈入永磁同步电机驱动的直接模型预测控制","authors":"A. Ayad, P. Karamanakos, R. Kennel, José R. Rodríguez","doi":"10.1109/CPE.2017.7915253","DOIUrl":null,"url":null,"abstract":"This paper proposes a direct model predictive control (MPC) strategy to control the bidirectional quasi-Z-source inverter (BqZSI) driving a permanent magnet synchronous machine (PMSM) for electric vehicle applications. The dq machine currents are simultaneously controlled with the capacitor voltage and inductor current of the dc side. The physical model of the BqZSI with PMSM is first derived which encompasses different operating modes and states of the BqZSI. To examine the performance of the proposed control scheme at steady-state and transient operation, simulations based on MATLAB/Simulink are conducted. The results indicate that the proposed control scheme offers a very good steady-state performance as well as fast dynamic responses during transients.","PeriodicalId":259750,"journal":{"name":"2017 11th IEEE International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Direct model predictive control of bidirectional quasi-Z-source inverters fed PMSM drives\",\"authors\":\"A. Ayad, P. Karamanakos, R. Kennel, José R. Rodríguez\",\"doi\":\"10.1109/CPE.2017.7915253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a direct model predictive control (MPC) strategy to control the bidirectional quasi-Z-source inverter (BqZSI) driving a permanent magnet synchronous machine (PMSM) for electric vehicle applications. The dq machine currents are simultaneously controlled with the capacitor voltage and inductor current of the dc side. The physical model of the BqZSI with PMSM is first derived which encompasses different operating modes and states of the BqZSI. To examine the performance of the proposed control scheme at steady-state and transient operation, simulations based on MATLAB/Simulink are conducted. The results indicate that the proposed control scheme offers a very good steady-state performance as well as fast dynamic responses during transients.\",\"PeriodicalId\":259750,\"journal\":{\"name\":\"2017 11th IEEE International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 11th IEEE International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CPE.2017.7915253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 11th IEEE International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CPE.2017.7915253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

提出了一种直接模型预测控制(MPC)策略,用于控制驱动电动汽车永磁同步电机(PMSM)的双向准z源逆变器(BqZSI)。dq电机电流由直流侧电容电压和电感电流同时控制。首先推导了带永磁同步电动机的BqZSI的物理模型,该模型包含了BqZSI的不同工作模式和状态。为了验证所提出的控制方案在稳态和暂态运行下的性能,基于MATLAB/Simulink进行了仿真。结果表明,所提出的控制方案具有良好的稳态性能和快速的动态响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Direct model predictive control of bidirectional quasi-Z-source inverters fed PMSM drives
This paper proposes a direct model predictive control (MPC) strategy to control the bidirectional quasi-Z-source inverter (BqZSI) driving a permanent magnet synchronous machine (PMSM) for electric vehicle applications. The dq machine currents are simultaneously controlled with the capacitor voltage and inductor current of the dc side. The physical model of the BqZSI with PMSM is first derived which encompasses different operating modes and states of the BqZSI. To examine the performance of the proposed control scheme at steady-state and transient operation, simulations based on MATLAB/Simulink are conducted. The results indicate that the proposed control scheme offers a very good steady-state performance as well as fast dynamic responses during transients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信