信道分布平稳的多队列多服务器排队系统的稳定区域

H. Halabian, I. Lambadaris, Chung-Horng Lung
{"title":"信道分布平稳的多队列多服务器排队系统的稳定区域","authors":"H. Halabian, I. Lambadaris, Chung-Horng Lung","doi":"10.1109/ISIT.2011.6033860","DOIUrl":null,"url":null,"abstract":"In this paper, we characterize the stability region of multi-queue multi-server (MQMS) queueing systems with stationary channel and packet arrival processes. Toward this, the necessary and sufficient conditions for the stability of the system are derived under general arrival processes with finite first and second moments. We show that when the arrival processes are stationary, the stability region form is a polytope for which we explicitly find the coefficients of the linear inequalities which characterize the stability region polytope.","PeriodicalId":208375,"journal":{"name":"2011 IEEE International Symposium on Information Theory Proceedings","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On the stability region of multi-queue multi-server queueing systems with stationary channel distribution\",\"authors\":\"H. Halabian, I. Lambadaris, Chung-Horng Lung\",\"doi\":\"10.1109/ISIT.2011.6033860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we characterize the stability region of multi-queue multi-server (MQMS) queueing systems with stationary channel and packet arrival processes. Toward this, the necessary and sufficient conditions for the stability of the system are derived under general arrival processes with finite first and second moments. We show that when the arrival processes are stationary, the stability region form is a polytope for which we explicitly find the coefficients of the linear inequalities which characterize the stability region polytope.\",\"PeriodicalId\":208375,\"journal\":{\"name\":\"2011 IEEE International Symposium on Information Theory Proceedings\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Symposium on Information Theory Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2011.6033860\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Information Theory Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2011.6033860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文研究了具有固定信道和数据包到达过程的多队列多服务器(MQMS)排队系统的稳定区域。为此,导出了一般一二阶矩有限到达过程下系统稳定的充分必要条件。我们证明了当到达过程是平稳时,稳定区域形式是一个多面体,我们明确地找到了表征稳定区域多面体的线性不等式的系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the stability region of multi-queue multi-server queueing systems with stationary channel distribution
In this paper, we characterize the stability region of multi-queue multi-server (MQMS) queueing systems with stationary channel and packet arrival processes. Toward this, the necessary and sufficient conditions for the stability of the system are derived under general arrival processes with finite first and second moments. We show that when the arrival processes are stationary, the stability region form is a polytope for which we explicitly find the coefficients of the linear inequalities which characterize the stability region polytope.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信