对独轮车的约束哈密顿动力学公式的见解

Karen Tatarian, Elie A. Shammas
{"title":"对独轮车的约束哈密顿动力学公式的见解","authors":"Karen Tatarian, Elie A. Shammas","doi":"10.1109/IMCET.2018.8603066","DOIUrl":null,"url":null,"abstract":"Modeling the dynamics of a unicycle problem with its nonholonomic constraints has been a prime example for validating various dynamic formulation, namely, the Hamiltonian and Lagrangian formulation. Both methods introduce Lagrange multipliers to enforce the constraints, hence adding extra variables and equations which renders the equations of motion into Differential-Algebraic-Equations. In this paper we use the constrained Hamiltonian and a Poisson structure to express the full dynamics of the Unicycle in a series of first-order differential equations which does not require the use of Lagrange multipliers. Finally, we simulate the three formulations to validate that the solutions are numerically equivalent.","PeriodicalId":220641,"journal":{"name":"2018 IEEE International Multidisciplinary Conference on Engineering Technology (IMCET)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insights into the Constrained Hamiltonian dynamics formulation of the Unicycle\",\"authors\":\"Karen Tatarian, Elie A. Shammas\",\"doi\":\"10.1109/IMCET.2018.8603066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modeling the dynamics of a unicycle problem with its nonholonomic constraints has been a prime example for validating various dynamic formulation, namely, the Hamiltonian and Lagrangian formulation. Both methods introduce Lagrange multipliers to enforce the constraints, hence adding extra variables and equations which renders the equations of motion into Differential-Algebraic-Equations. In this paper we use the constrained Hamiltonian and a Poisson structure to express the full dynamics of the Unicycle in a series of first-order differential equations which does not require the use of Lagrange multipliers. Finally, we simulate the three formulations to validate that the solutions are numerically equivalent.\",\"PeriodicalId\":220641,\"journal\":{\"name\":\"2018 IEEE International Multidisciplinary Conference on Engineering Technology (IMCET)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Multidisciplinary Conference on Engineering Technology (IMCET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMCET.2018.8603066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Multidisciplinary Conference on Engineering Technology (IMCET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMCET.2018.8603066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对具有非完整约束的独轮车问题的动力学建模是验证各种动力学公式,即哈密顿公式和拉格朗日公式的一个主要例子。两种方法都引入拉格朗日乘子来加强约束,从而增加额外的变量和方程,从而将运动方程转化为微分代数方程。本文利用约束哈密顿量和泊松结构,在不需要拉格朗日乘子的情况下,用一系列一阶微分方程来表示独轮车的完全动力学。最后,我们模拟了这三种公式,以验证解在数值上是等效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Insights into the Constrained Hamiltonian dynamics formulation of the Unicycle
Modeling the dynamics of a unicycle problem with its nonholonomic constraints has been a prime example for validating various dynamic formulation, namely, the Hamiltonian and Lagrangian formulation. Both methods introduce Lagrange multipliers to enforce the constraints, hence adding extra variables and equations which renders the equations of motion into Differential-Algebraic-Equations. In this paper we use the constrained Hamiltonian and a Poisson structure to express the full dynamics of the Unicycle in a series of first-order differential equations which does not require the use of Lagrange multipliers. Finally, we simulate the three formulations to validate that the solutions are numerically equivalent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信