基于DAGSVM的高炉故障诊断

A. Wang, L. Zhang, Nan Gao
{"title":"基于DAGSVM的高炉故障诊断","authors":"A. Wang, L. Zhang, Nan Gao","doi":"10.1109/IS.2006.348482","DOIUrl":null,"url":null,"abstract":"For achieving high efficiency of artificial intelligence applied in decision-making system of blast furnace, and reducing high technique demands to operators, a new multi-classification method based on support vector machines (SVMs) is proposed. In order to avoid dimension disaster and solve multi-classification problem, use decision directed acyclic graph (DDAG) algorithm combined with each kernel function, and map the training samples into high dimension space utilizing the statistic learning theory. Then compare different performance of each kernel function referring to the actual process data, and select the proper one to construct diagnosis classifier. Through tested different multi-classification strategies, simulation results show that DAGSVM model is superior to the others on testing accuracy and has efficient classification ability","PeriodicalId":116809,"journal":{"name":"2006 3rd International IEEE Conference Intelligent Systems","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Fault Diagnosis of Blast Furnace Based on DAGSVM\",\"authors\":\"A. Wang, L. Zhang, Nan Gao\",\"doi\":\"10.1109/IS.2006.348482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For achieving high efficiency of artificial intelligence applied in decision-making system of blast furnace, and reducing high technique demands to operators, a new multi-classification method based on support vector machines (SVMs) is proposed. In order to avoid dimension disaster and solve multi-classification problem, use decision directed acyclic graph (DDAG) algorithm combined with each kernel function, and map the training samples into high dimension space utilizing the statistic learning theory. Then compare different performance of each kernel function referring to the actual process data, and select the proper one to construct diagnosis classifier. Through tested different multi-classification strategies, simulation results show that DAGSVM model is superior to the others on testing accuracy and has efficient classification ability\",\"PeriodicalId\":116809,\"journal\":{\"name\":\"2006 3rd International IEEE Conference Intelligent Systems\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 3rd International IEEE Conference Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IS.2006.348482\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 3rd International IEEE Conference Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IS.2006.348482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

为实现人工智能在高炉决策系统中的高效应用,降低对操作人员的高技术要求,提出了一种基于支持向量机的多分类方法。为了避免维数灾难和解决多分类问题,将决策有向无环图(DDAG)算法与各核函数相结合,利用统计学习理论将训练样本映射到高维空间。然后结合实际过程数据,比较各核函数的不同性能,选择合适的核函数构建诊断分类器。通过对不同多分类策略的测试,仿真结果表明,DAGSVM模型在测试精度上优于其他模型,具有高效的分类能力
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fault Diagnosis of Blast Furnace Based on DAGSVM
For achieving high efficiency of artificial intelligence applied in decision-making system of blast furnace, and reducing high technique demands to operators, a new multi-classification method based on support vector machines (SVMs) is proposed. In order to avoid dimension disaster and solve multi-classification problem, use decision directed acyclic graph (DDAG) algorithm combined with each kernel function, and map the training samples into high dimension space utilizing the statistic learning theory. Then compare different performance of each kernel function referring to the actual process data, and select the proper one to construct diagnosis classifier. Through tested different multi-classification strategies, simulation results show that DAGSVM model is superior to the others on testing accuracy and has efficient classification ability
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信