基于Nlos/Los条件的空间场估计改进室内环境定位

E. Arias-de-Reyna, D. Dardari, P. Closas, P. Djurić
{"title":"基于Nlos/Los条件的空间场估计改进室内环境定位","authors":"E. Arias-de-Reyna, D. Dardari, P. Closas, P. Djurić","doi":"10.1109/SSP.2018.8450840","DOIUrl":null,"url":null,"abstract":"A major challenge in indoor localization is the presence or absence of line-of-sight (LOS). The absence of LOS, denoted as non-line-of-sight (NLOS), directly affects the accuracy of any localization algorithm because of the induced bias in ranging. The estimation of the spatial distribution of NLOS-induced ranging bias in indoor environments remains a major challenge. In this paper, we propose a novel crowd-based Bayesian learning approach to the estimation of bias fields caused by LOS/NLOS conditions. The proposed method is based on the concept of Gaussian processes and exploits numerous measurements. The performance of the method is demonstrated with extensive experiments.","PeriodicalId":330528,"journal":{"name":"2018 IEEE Statistical Signal Processing Workshop (SSP)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Estimation Of Spatial Fields Of Nlos/Los Conditions For Improved Localization In Indoor Environments\",\"authors\":\"E. Arias-de-Reyna, D. Dardari, P. Closas, P. Djurić\",\"doi\":\"10.1109/SSP.2018.8450840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A major challenge in indoor localization is the presence or absence of line-of-sight (LOS). The absence of LOS, denoted as non-line-of-sight (NLOS), directly affects the accuracy of any localization algorithm because of the induced bias in ranging. The estimation of the spatial distribution of NLOS-induced ranging bias in indoor environments remains a major challenge. In this paper, we propose a novel crowd-based Bayesian learning approach to the estimation of bias fields caused by LOS/NLOS conditions. The proposed method is based on the concept of Gaussian processes and exploits numerous measurements. The performance of the method is demonstrated with extensive experiments.\",\"PeriodicalId\":330528,\"journal\":{\"name\":\"2018 IEEE Statistical Signal Processing Workshop (SSP)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Statistical Signal Processing Workshop (SSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSP.2018.8450840\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP.2018.8450840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

室内定位的一个主要挑战是是否存在视线(LOS)。缺乏视距(non-line-of-sight, NLOS)直接影响任何定位算法的精度,因为测距过程中会产生偏差。在室内环境中,nlos诱导的测距偏差的空间分布估计仍然是一个主要的挑战。在本文中,我们提出了一种新的基于人群的贝叶斯学习方法来估计由LOS/NLOS条件引起的偏置场。提出的方法是基于高斯过程的概念,并利用大量的测量。通过大量的实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation Of Spatial Fields Of Nlos/Los Conditions For Improved Localization In Indoor Environments
A major challenge in indoor localization is the presence or absence of line-of-sight (LOS). The absence of LOS, denoted as non-line-of-sight (NLOS), directly affects the accuracy of any localization algorithm because of the induced bias in ranging. The estimation of the spatial distribution of NLOS-induced ranging bias in indoor environments remains a major challenge. In this paper, we propose a novel crowd-based Bayesian learning approach to the estimation of bias fields caused by LOS/NLOS conditions. The proposed method is based on the concept of Gaussian processes and exploits numerous measurements. The performance of the method is demonstrated with extensive experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信