Muhammad Farhan Kurnia, Siti Sumiati Solihat, Gut Windarsih, Didi Usmadi
{"title":"自动识别五种类型的RESAK (Vatica spp.)基于叶的形态特征和机器学习算法","authors":"Muhammad Farhan Kurnia, Siti Sumiati Solihat, Gut Windarsih, Didi Usmadi","doi":"10.55981/bkr.2023.740","DOIUrl":null,"url":null,"abstract":"Resak (Vatica spp.) merupakan salah satu marga yang termasuk dalam suku tumbuhan berkayu, Diperocarpaceae, dengan beberapa jenis di antaranya termasuk jenis terancam. Kemampuan identifikasi jenis dengan benar merupakan salah satu aspek yang penting dalam upaya konservasi. Penelitian ini bertujuan untuk mengetahui karakter morfologi daun resak, kemiripan antar jenis, dan performa dari lima algoritma pembelajaran mesin dalam mengidentifikasi otomatis jenis resak. Karakter morfologi yang diukur adalah warna, ukuran, bentuk, dan tekstur daun dari lima jenis Vatica spp. koleksi Kebun Raya Bogor. Perbedaan nilai rata-rata setiap karakter morfologi dianalisis menggunakan analisis sidik ragam dan uji Tukey. Keragaman dan kemiripan morfologi dianalisis menggunakan analisis komponen utama dan analisis kluster. Identifikasi otomatis dilakukan menggunakan lima algoritma pembelajaran mesin, yaitu BayesNet, K-Nearest Neighbor, Artificial Neural Network, Random Forest, dan Support Vector Machine. Hasil analisis menunjukkan bahwa karakter morfologi daun (warna, ukuran, bentuk, dan tekstur) pada kelima jenis resak mempunyai perbedaan yang signifikan. Semua karakter morfologi secara signifikan mempengaruhi perbedaan penciri daun resak. Pada tingkat kemiripan 80%, kelima jenis resak dikelompokkan menjadi tiga kluster, yaitu kluster I (V. granulata, V. pauciflora, dan V. venulosa), kluster II (V. bantamensis), dan kluster III (V. rassak). Algoritma pembelajaran mesin yang terbaik dalam melakukan identifikasi otomatis jenis resak menggunakan karakter morfologi daun adalah K-Nearest Neighbor dengan nilai overall accuracy 0,92, koefisien Kappa 0,90, rata-rata precision 0,93, dan rata-rata recall 0,92.","PeriodicalId":274763,"journal":{"name":"Buletin Kebun Raya","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IDENTIFIKASI OTOMATIS LIMA JENIS RESAK (Vatica spp.) BERDASARKAN BEBERAPA KARAKTER MORFOLOGI DAUN DAN ALGORITMA PEMBELAJARAN MESIN\",\"authors\":\"Muhammad Farhan Kurnia, Siti Sumiati Solihat, Gut Windarsih, Didi Usmadi\",\"doi\":\"10.55981/bkr.2023.740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Resak (Vatica spp.) merupakan salah satu marga yang termasuk dalam suku tumbuhan berkayu, Diperocarpaceae, dengan beberapa jenis di antaranya termasuk jenis terancam. Kemampuan identifikasi jenis dengan benar merupakan salah satu aspek yang penting dalam upaya konservasi. Penelitian ini bertujuan untuk mengetahui karakter morfologi daun resak, kemiripan antar jenis, dan performa dari lima algoritma pembelajaran mesin dalam mengidentifikasi otomatis jenis resak. Karakter morfologi yang diukur adalah warna, ukuran, bentuk, dan tekstur daun dari lima jenis Vatica spp. koleksi Kebun Raya Bogor. Perbedaan nilai rata-rata setiap karakter morfologi dianalisis menggunakan analisis sidik ragam dan uji Tukey. Keragaman dan kemiripan morfologi dianalisis menggunakan analisis komponen utama dan analisis kluster. Identifikasi otomatis dilakukan menggunakan lima algoritma pembelajaran mesin, yaitu BayesNet, K-Nearest Neighbor, Artificial Neural Network, Random Forest, dan Support Vector Machine. Hasil analisis menunjukkan bahwa karakter morfologi daun (warna, ukuran, bentuk, dan tekstur) pada kelima jenis resak mempunyai perbedaan yang signifikan. Semua karakter morfologi secara signifikan mempengaruhi perbedaan penciri daun resak. Pada tingkat kemiripan 80%, kelima jenis resak dikelompokkan menjadi tiga kluster, yaitu kluster I (V. granulata, V. pauciflora, dan V. venulosa), kluster II (V. bantamensis), dan kluster III (V. rassak). Algoritma pembelajaran mesin yang terbaik dalam melakukan identifikasi otomatis jenis resak menggunakan karakter morfologi daun adalah K-Nearest Neighbor dengan nilai overall accuracy 0,92, koefisien Kappa 0,90, rata-rata precision 0,93, dan rata-rata recall 0,92.\",\"PeriodicalId\":274763,\"journal\":{\"name\":\"Buletin Kebun Raya\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Buletin Kebun Raya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55981/bkr.2023.740\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Buletin Kebun Raya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55981/bkr.2023.740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
IDENTIFIKASI OTOMATIS LIMA JENIS RESAK (Vatica spp.) BERDASARKAN BEBERAPA KARAKTER MORFOLOGI DAUN DAN ALGORITMA PEMBELAJARAN MESIN
Resak (Vatica spp.) merupakan salah satu marga yang termasuk dalam suku tumbuhan berkayu, Diperocarpaceae, dengan beberapa jenis di antaranya termasuk jenis terancam. Kemampuan identifikasi jenis dengan benar merupakan salah satu aspek yang penting dalam upaya konservasi. Penelitian ini bertujuan untuk mengetahui karakter morfologi daun resak, kemiripan antar jenis, dan performa dari lima algoritma pembelajaran mesin dalam mengidentifikasi otomatis jenis resak. Karakter morfologi yang diukur adalah warna, ukuran, bentuk, dan tekstur daun dari lima jenis Vatica spp. koleksi Kebun Raya Bogor. Perbedaan nilai rata-rata setiap karakter morfologi dianalisis menggunakan analisis sidik ragam dan uji Tukey. Keragaman dan kemiripan morfologi dianalisis menggunakan analisis komponen utama dan analisis kluster. Identifikasi otomatis dilakukan menggunakan lima algoritma pembelajaran mesin, yaitu BayesNet, K-Nearest Neighbor, Artificial Neural Network, Random Forest, dan Support Vector Machine. Hasil analisis menunjukkan bahwa karakter morfologi daun (warna, ukuran, bentuk, dan tekstur) pada kelima jenis resak mempunyai perbedaan yang signifikan. Semua karakter morfologi secara signifikan mempengaruhi perbedaan penciri daun resak. Pada tingkat kemiripan 80%, kelima jenis resak dikelompokkan menjadi tiga kluster, yaitu kluster I (V. granulata, V. pauciflora, dan V. venulosa), kluster II (V. bantamensis), dan kluster III (V. rassak). Algoritma pembelajaran mesin yang terbaik dalam melakukan identifikasi otomatis jenis resak menggunakan karakter morfologi daun adalah K-Nearest Neighbor dengan nilai overall accuracy 0,92, koefisien Kappa 0,90, rata-rata precision 0,93, dan rata-rata recall 0,92.