图像绘制的低秩非线性模型方法

Ryohei Sasaki, K. Konishi, Tomohiro Takahashi, T. Furukawa
{"title":"图像绘制的低秩非线性模型方法","authors":"Ryohei Sasaki, K. Konishi, Tomohiro Takahashi, T. Furukawa","doi":"10.23919/EUSIPCO.2017.8081224","DOIUrl":null,"url":null,"abstract":"This paper proposes a new algorithm for image inpainting algorithm based on the matrix rank minimization with nonlinear mapping function. Assuming that each intensity value of a nonlinear mapped image can be modeled by the autoregressive (AR) model, the image inpainting problem is formulated as a kind of the matrix rank minimization problem, and this paper modifies the iterative partial matrix shrinkage (IPMS) algorithm and provides an inpainting algorithm, which estimates a nonlinear mapping function and the missing pixels simultaneously. Numerical examples show that the proposed algorithm recovers missing pixels efficiently.","PeriodicalId":346811,"journal":{"name":"2017 25th European Signal Processing Conference (EUSIPCO)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Low-rank and nonlinear model approach to image inpainting\",\"authors\":\"Ryohei Sasaki, K. Konishi, Tomohiro Takahashi, T. Furukawa\",\"doi\":\"10.23919/EUSIPCO.2017.8081224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new algorithm for image inpainting algorithm based on the matrix rank minimization with nonlinear mapping function. Assuming that each intensity value of a nonlinear mapped image can be modeled by the autoregressive (AR) model, the image inpainting problem is formulated as a kind of the matrix rank minimization problem, and this paper modifies the iterative partial matrix shrinkage (IPMS) algorithm and provides an inpainting algorithm, which estimates a nonlinear mapping function and the missing pixels simultaneously. Numerical examples show that the proposed algorithm recovers missing pixels efficiently.\",\"PeriodicalId\":346811,\"journal\":{\"name\":\"2017 25th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 25th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EUSIPCO.2017.8081224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2017.8081224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于非线性映射函数的矩阵秩最小化的图像绘制算法。假设非线性映射图像的每个强度值都可以用自回归(AR)模型建模,将图像的上色问题化为一种矩阵秩最小化问题,并对迭代部分矩阵收缩(IPMS)算法进行改进,提出了一种同时估计非线性映射函数和缺失像素的上色算法。数值算例表明,该算法能有效地恢复缺失像素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-rank and nonlinear model approach to image inpainting
This paper proposes a new algorithm for image inpainting algorithm based on the matrix rank minimization with nonlinear mapping function. Assuming that each intensity value of a nonlinear mapped image can be modeled by the autoregressive (AR) model, the image inpainting problem is formulated as a kind of the matrix rank minimization problem, and this paper modifies the iterative partial matrix shrinkage (IPMS) algorithm and provides an inpainting algorithm, which estimates a nonlinear mapping function and the missing pixels simultaneously. Numerical examples show that the proposed algorithm recovers missing pixels efficiently.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信