反常扩散反问题中的神经网络和经典算法

V. A. Dedok, T. V. Bugueva
{"title":"反常扩散反问题中的神经网络和经典算法","authors":"V. A. Dedok, T. V. Bugueva","doi":"10.1109/S.A.I.ence50533.2020.9303217","DOIUrl":null,"url":null,"abstract":"The paper develops a new numerical method for the solution of the inverse problems. This method can be classified as a predictor-corrector method, in which the artificial neural network plays the role of a predictor, and the gradient method plays the role of a corrector. We apply this method to inverse anomalous diffusion problem and show its statistical efficiency.","PeriodicalId":201402,"journal":{"name":"2020 Science and Artificial Intelligence conference (S.A.I.ence)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural Networks and Classical Algorithms in Inverse Problems of Anomalous Diffusion\",\"authors\":\"V. A. Dedok, T. V. Bugueva\",\"doi\":\"10.1109/S.A.I.ence50533.2020.9303217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper develops a new numerical method for the solution of the inverse problems. This method can be classified as a predictor-corrector method, in which the artificial neural network plays the role of a predictor, and the gradient method plays the role of a corrector. We apply this method to inverse anomalous diffusion problem and show its statistical efficiency.\",\"PeriodicalId\":201402,\"journal\":{\"name\":\"2020 Science and Artificial Intelligence conference (S.A.I.ence)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Science and Artificial Intelligence conference (S.A.I.ence)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/S.A.I.ence50533.2020.9303217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Science and Artificial Intelligence conference (S.A.I.ence)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/S.A.I.ence50533.2020.9303217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的求解逆问题的数值方法。该方法可分为预测-校正方法,其中人工神经网络扮演预测器的角色,梯度法扮演校正器的角色。将该方法应用于反常扩散逆问题,并证明了其统计效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural Networks and Classical Algorithms in Inverse Problems of Anomalous Diffusion
The paper develops a new numerical method for the solution of the inverse problems. This method can be classified as a predictor-corrector method, in which the artificial neural network plays the role of a predictor, and the gradient method plays the role of a corrector. We apply this method to inverse anomalous diffusion problem and show its statistical efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信