捕食者与猎物模型的动力学分析及一些计算仿真

S. Khoshnaw
{"title":"捕食者与猎物模型的动力学分析及一些计算仿真","authors":"S. Khoshnaw","doi":"10.4172/2329-9533.1000137","DOIUrl":null,"url":null,"abstract":"Mathematical modelling and numerical simulations of interaction populations are crucial topics in systems biology. The interactions of ecological models may occur among individuals of the same species or individuals of different species. Describing the dynamics of such models occasionally requires some techniques of model analysis. Choosing appropriate techniques of model analysis is often a difficult task. We define a prey (mouse) and predator (cat) model. The system is modeled by a pair of non-linear ordinary differential equations using mass action law, under constant rates. A proper scaling is suggested to minimize the number of parameters. More interestingly, we propose a homotopy technique with n expanding parameters for finding some analytical approximate solutions. Numerical simulations are provided using Matlab for different parameters and initial conditions.","PeriodicalId":119149,"journal":{"name":"arXiv: Quantitative Methods","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dynamic Analysis of a Predator and Prey Model with some Computational Simulations\",\"authors\":\"S. Khoshnaw\",\"doi\":\"10.4172/2329-9533.1000137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mathematical modelling and numerical simulations of interaction populations are crucial topics in systems biology. The interactions of ecological models may occur among individuals of the same species or individuals of different species. Describing the dynamics of such models occasionally requires some techniques of model analysis. Choosing appropriate techniques of model analysis is often a difficult task. We define a prey (mouse) and predator (cat) model. The system is modeled by a pair of non-linear ordinary differential equations using mass action law, under constant rates. A proper scaling is suggested to minimize the number of parameters. More interestingly, we propose a homotopy technique with n expanding parameters for finding some analytical approximate solutions. Numerical simulations are provided using Matlab for different parameters and initial conditions.\",\"PeriodicalId\":119149,\"journal\":{\"name\":\"arXiv: Quantitative Methods\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Quantitative Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2329-9533.1000137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantitative Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2329-9533.1000137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

相互作用种群的数学建模和数值模拟是系统生物学中的重要课题。生态模式的相互作用可能发生在同一物种的个体之间,也可能发生在不同物种的个体之间。描述这种模型的动力学有时需要一些模型分析技术。选择合适的模型分析技术通常是一项困难的任务。我们定义了一个猎物(老鼠)和捕食者(猫)模型。在恒定速率下,采用质量作用定律,用一对非线性常微分方程对系统进行建模。建议采用适当的比例来减少参数的数量。更有趣的是,我们提出了一种具有n个展开参数的同伦方法来求一些解析近似解。利用Matlab对不同参数和初始条件进行了数值模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic Analysis of a Predator and Prey Model with some Computational Simulations
Mathematical modelling and numerical simulations of interaction populations are crucial topics in systems biology. The interactions of ecological models may occur among individuals of the same species or individuals of different species. Describing the dynamics of such models occasionally requires some techniques of model analysis. Choosing appropriate techniques of model analysis is often a difficult task. We define a prey (mouse) and predator (cat) model. The system is modeled by a pair of non-linear ordinary differential equations using mass action law, under constant rates. A proper scaling is suggested to minimize the number of parameters. More interestingly, we propose a homotopy technique with n expanding parameters for finding some analytical approximate solutions. Numerical simulations are provided using Matlab for different parameters and initial conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信