法布里-珀罗开腔解的坐标变换方法

T. Karpisz, B. Salski, P. Kopyt, J. Krupka
{"title":"法布里-珀罗开腔解的坐标变换方法","authors":"T. Karpisz, B. Salski, P. Kopyt, J. Krupka","doi":"10.23919/MIKON.2018.8405291","DOIUrl":null,"url":null,"abstract":"A new technique based on coordinate transformation dedicated to the analysis of an open Fabry-Perot resonator is introduced in this paper. The method allows reducing the problem to the scalar one-dimensional analysis of the resonator consisting of two Gaussian mirrors, which fit better to a Gaussian mode than spherical mirrors commonly used in that kind of open resonators. The proposed method is validated rigorously in the 20–40 GHz frequency range using a finite difference time domain method.","PeriodicalId":143491,"journal":{"name":"2018 22nd International Microwave and Radar Conference (MIKON)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Coordinate transformation approach to the solution of the Fabry-Perot open resonator\",\"authors\":\"T. Karpisz, B. Salski, P. Kopyt, J. Krupka\",\"doi\":\"10.23919/MIKON.2018.8405291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new technique based on coordinate transformation dedicated to the analysis of an open Fabry-Perot resonator is introduced in this paper. The method allows reducing the problem to the scalar one-dimensional analysis of the resonator consisting of two Gaussian mirrors, which fit better to a Gaussian mode than spherical mirrors commonly used in that kind of open resonators. The proposed method is validated rigorously in the 20–40 GHz frequency range using a finite difference time domain method.\",\"PeriodicalId\":143491,\"journal\":{\"name\":\"2018 22nd International Microwave and Radar Conference (MIKON)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 22nd International Microwave and Radar Conference (MIKON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/MIKON.2018.8405291\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 22nd International Microwave and Radar Conference (MIKON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MIKON.2018.8405291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文介绍了一种基于坐标变换的分析开放法布里-珀罗谐振腔的新方法。该方法可以将问题简化为由两个高斯反射镜组成的谐振腔的标量一维分析,高斯反射镜比这种开放谐振腔中常用的球面反射镜更适合高斯模式。采用时域有限差分法在20 ~ 40ghz频率范围内对该方法进行了严格验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coordinate transformation approach to the solution of the Fabry-Perot open resonator
A new technique based on coordinate transformation dedicated to the analysis of an open Fabry-Perot resonator is introduced in this paper. The method allows reducing the problem to the scalar one-dimensional analysis of the resonator consisting of two Gaussian mirrors, which fit better to a Gaussian mode than spherical mirrors commonly used in that kind of open resonators. The proposed method is validated rigorously in the 20–40 GHz frequency range using a finite difference time domain method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信