自适应卡尔曼滤波在超宽带网络中的目标跟踪

Ioan Domuta, T. Palade
{"title":"自适应卡尔曼滤波在超宽带网络中的目标跟踪","authors":"Ioan Domuta, T. Palade","doi":"10.1109/WPNC.2016.7822855","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to emphasize the benefits of using the information provided by the UWB network for the Adaptive Kalman Filtering (AKF). The standard 802.15.4 specifies in the section PHY UWB the field of parameters Ranging FoM, parameters that show the trust level of the receiver in determining the reception moment of leading edge of the ranging pulse. Using the specified parameters, Confidence Interval and Confidence Level, and based on statistical theory the current standard deviation is determined for every anchor of the network. The standard deviations of the anchors are combined in order to get the observation covariance for the Kalman filtering. In the steady state the innovation should be within the Confidence Region ellipsoid and if the innovation does not fall in that region the filter diverges or it is biased and it should be online tuned. The difference between the innovation and the Confidence Interval will constitute the information for adjustment of the state covariance in the Kalman Filter.","PeriodicalId":148664,"journal":{"name":"2016 13th Workshop on Positioning, Navigation and Communications (WPNC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Adaptive Kalman Filter for target tracking in the UWB networks\",\"authors\":\"Ioan Domuta, T. Palade\",\"doi\":\"10.1109/WPNC.2016.7822855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to emphasize the benefits of using the information provided by the UWB network for the Adaptive Kalman Filtering (AKF). The standard 802.15.4 specifies in the section PHY UWB the field of parameters Ranging FoM, parameters that show the trust level of the receiver in determining the reception moment of leading edge of the ranging pulse. Using the specified parameters, Confidence Interval and Confidence Level, and based on statistical theory the current standard deviation is determined for every anchor of the network. The standard deviations of the anchors are combined in order to get the observation covariance for the Kalman filtering. In the steady state the innovation should be within the Confidence Region ellipsoid and if the innovation does not fall in that region the filter diverges or it is biased and it should be online tuned. The difference between the innovation and the Confidence Interval will constitute the information for adjustment of the state covariance in the Kalman Filter.\",\"PeriodicalId\":148664,\"journal\":{\"name\":\"2016 13th Workshop on Positioning, Navigation and Communications (WPNC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 13th Workshop on Positioning, Navigation and Communications (WPNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WPNC.2016.7822855\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th Workshop on Positioning, Navigation and Communications (WPNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WPNC.2016.7822855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文的目的是强调利用超宽带网络提供的信息进行自适应卡尔曼滤波(AKF)的好处。标准802.15.4在PHY UWB一节中规定了测距FoM参数字段,这些参数在确定测距脉冲前沿的接收时刻时显示了接收机的信任程度。利用给定的参数、置信区间(Confidence Interval)和置信水平(Confidence Level),根据统计理论确定网络中每个锚点的当前标准差。结合锚点的标准差,得到卡尔曼滤波的观测协方差。在稳定状态下,创新应该在置信区域椭球内,如果创新不落在该区域,滤波器就会发散或有偏,并且应该在线调谐。创新值与置信区间的差值将构成卡尔曼滤波中状态协方差调整的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Kalman Filter for target tracking in the UWB networks
The aim of this paper is to emphasize the benefits of using the information provided by the UWB network for the Adaptive Kalman Filtering (AKF). The standard 802.15.4 specifies in the section PHY UWB the field of parameters Ranging FoM, parameters that show the trust level of the receiver in determining the reception moment of leading edge of the ranging pulse. Using the specified parameters, Confidence Interval and Confidence Level, and based on statistical theory the current standard deviation is determined for every anchor of the network. The standard deviations of the anchors are combined in order to get the observation covariance for the Kalman filtering. In the steady state the innovation should be within the Confidence Region ellipsoid and if the innovation does not fall in that region the filter diverges or it is biased and it should be online tuned. The difference between the innovation and the Confidence Interval will constitute the information for adjustment of the state covariance in the Kalman Filter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信