{"title":"命题截断的一般全称性质","authors":"Nicolai Kraus","doi":"10.4230/LIPIcs.TYPES.2014.111","DOIUrl":null,"url":null,"abstract":"In a type-theoretic fibration category in the sense of Shulman (representing a dependent type theory with at least 1, Sigma, Pi, and identity types), we define the type of constant functions from A to B. This involves an infinite tower of coherence conditions, and we therefore need the category to have Reedy limits of diagrams over omega. Our main result is that, if the category further has propositional truncations and satisfies function extensionality, the type of constant function is equivalent to the type ||A|| -> B. \nIf B is an n-type for a given finite n, the tower of coherence conditions becomes finite and the requirement of nontrivial Reedy limits vanishes. The whole construction can then be carried out in Homotopy Type Theory and generalises the universal property of the truncation. This provides a way to define functions ||A|| -> B if B is not known to be propositional, and it streamlines the common approach of finding a proposition Q with A -> Q and Q -> B.","PeriodicalId":131421,"journal":{"name":"Types for Proofs and Programs","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"The General Universal Property of the Propositional Truncation\",\"authors\":\"Nicolai Kraus\",\"doi\":\"10.4230/LIPIcs.TYPES.2014.111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a type-theoretic fibration category in the sense of Shulman (representing a dependent type theory with at least 1, Sigma, Pi, and identity types), we define the type of constant functions from A to B. This involves an infinite tower of coherence conditions, and we therefore need the category to have Reedy limits of diagrams over omega. Our main result is that, if the category further has propositional truncations and satisfies function extensionality, the type of constant function is equivalent to the type ||A|| -> B. \\nIf B is an n-type for a given finite n, the tower of coherence conditions becomes finite and the requirement of nontrivial Reedy limits vanishes. The whole construction can then be carried out in Homotopy Type Theory and generalises the universal property of the truncation. This provides a way to define functions ||A|| -> B if B is not known to be propositional, and it streamlines the common approach of finding a proposition Q with A -> Q and Q -> B.\",\"PeriodicalId\":131421,\"journal\":{\"name\":\"Types for Proofs and Programs\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Types for Proofs and Programs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.TYPES.2014.111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Types for Proofs and Programs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.TYPES.2014.111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The General Universal Property of the Propositional Truncation
In a type-theoretic fibration category in the sense of Shulman (representing a dependent type theory with at least 1, Sigma, Pi, and identity types), we define the type of constant functions from A to B. This involves an infinite tower of coherence conditions, and we therefore need the category to have Reedy limits of diagrams over omega. Our main result is that, if the category further has propositional truncations and satisfies function extensionality, the type of constant function is equivalent to the type ||A|| -> B.
If B is an n-type for a given finite n, the tower of coherence conditions becomes finite and the requirement of nontrivial Reedy limits vanishes. The whole construction can then be carried out in Homotopy Type Theory and generalises the universal property of the truncation. This provides a way to define functions ||A|| -> B if B is not known to be propositional, and it streamlines the common approach of finding a proposition Q with A -> Q and Q -> B.