投资组合管理中的DDPG算法

Fang Lin, Meiqing Wang, Rong Liu, Qianying Hong
{"title":"投资组合管理中的DDPG算法","authors":"Fang Lin, Meiqing Wang, Rong Liu, Qianying Hong","doi":"10.1109/DCABES50732.2020.00065","DOIUrl":null,"url":null,"abstract":"The purpose of portfolio management is to select a variety of financial products to form a portfolio and then manage these portfolios to achieve the purpose of diversifying risk and improving efficiency. In this paper, the Deep Deterministic Policy Gradient (DDPG) algorithm with neural networks is used, new states, actions and reward functions are proposed. The empirical analysis shows that this paper's method performs better than the method of investing with Q-learning algorithm, equally-weighted method, investing all funds in risk-free assets, or investing all funds in stocks.","PeriodicalId":351404,"journal":{"name":"2020 19th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A DDPG Algorithm for Portfolio Management\",\"authors\":\"Fang Lin, Meiqing Wang, Rong Liu, Qianying Hong\",\"doi\":\"10.1109/DCABES50732.2020.00065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of portfolio management is to select a variety of financial products to form a portfolio and then manage these portfolios to achieve the purpose of diversifying risk and improving efficiency. In this paper, the Deep Deterministic Policy Gradient (DDPG) algorithm with neural networks is used, new states, actions and reward functions are proposed. The empirical analysis shows that this paper's method performs better than the method of investing with Q-learning algorithm, equally-weighted method, investing all funds in risk-free assets, or investing all funds in stocks.\",\"PeriodicalId\":351404,\"journal\":{\"name\":\"2020 19th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 19th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCABES50732.2020.00065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 19th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCABES50732.2020.00065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

投资组合管理的目的是选择多种金融产品组成一个投资组合,然后对这些投资组合进行管理,以达到分散风险和提高效率的目的。本文将深度确定性策略梯度(Deep Deterministic Policy Gradient, DDPG)算法与神经网络相结合,提出了新的状态、动作和奖励函数。实证分析表明,本文方法优于q -学习算法投资方法、等权重法投资方法、全部资金投资于无风险资产投资方法、全部资金投资于股票投资方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A DDPG Algorithm for Portfolio Management
The purpose of portfolio management is to select a variety of financial products to form a portfolio and then manage these portfolios to achieve the purpose of diversifying risk and improving efficiency. In this paper, the Deep Deterministic Policy Gradient (DDPG) algorithm with neural networks is used, new states, actions and reward functions are proposed. The empirical analysis shows that this paper's method performs better than the method of investing with Q-learning algorithm, equally-weighted method, investing all funds in risk-free assets, or investing all funds in stocks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信