{"title":"用于自动驾驶实时目标检测的车辆与基础设施通信","authors":"Faisal Hawlader, François Robinet, R. Frank","doi":"10.23919/WONS57325.2023.10061953","DOIUrl":null,"url":null,"abstract":"Environmental perception is a key element of autonomous driving because the information received from the perception module influences core driving decisions. An outstanding challenge in real-time perception for autonomous driving lies in finding the best trade-off between detection quality and latency. Major constraints on both computation and power have to be taken into account for real-time perception in autonomous vehicles. Larger object detection models tend to produce the best results, but are also slower at runtime. Since the most accurate detectors cannot run in real-time locally, we investigate the possibility of offloading computation to edge and cloud platforms, which are less resource-constrained. We create a synthetic dataset to train an object detection model and evaluate different offloading strategies. Using real hardware and network simulations, we compare different trade-offs between prediction quality and end-to-end delay. Since sending raw frames over the network implies additional transmission delays, we also explore the use of JPEG compression at varying qualities and measure its impact on prediction metrics. We show that models with adequate compression can be run in real-time on the cloud while outperforming local detection performance.","PeriodicalId":380263,"journal":{"name":"2023 18th Wireless On-Demand Network Systems and Services Conference (WONS)","volume":"1949 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Vehicle-to-Infrastructure Communication for Real-Time Object Detection in Autonomous Driving\",\"authors\":\"Faisal Hawlader, François Robinet, R. Frank\",\"doi\":\"10.23919/WONS57325.2023.10061953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Environmental perception is a key element of autonomous driving because the information received from the perception module influences core driving decisions. An outstanding challenge in real-time perception for autonomous driving lies in finding the best trade-off between detection quality and latency. Major constraints on both computation and power have to be taken into account for real-time perception in autonomous vehicles. Larger object detection models tend to produce the best results, but are also slower at runtime. Since the most accurate detectors cannot run in real-time locally, we investigate the possibility of offloading computation to edge and cloud platforms, which are less resource-constrained. We create a synthetic dataset to train an object detection model and evaluate different offloading strategies. Using real hardware and network simulations, we compare different trade-offs between prediction quality and end-to-end delay. Since sending raw frames over the network implies additional transmission delays, we also explore the use of JPEG compression at varying qualities and measure its impact on prediction metrics. We show that models with adequate compression can be run in real-time on the cloud while outperforming local detection performance.\",\"PeriodicalId\":380263,\"journal\":{\"name\":\"2023 18th Wireless On-Demand Network Systems and Services Conference (WONS)\",\"volume\":\"1949 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 18th Wireless On-Demand Network Systems and Services Conference (WONS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/WONS57325.2023.10061953\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 18th Wireless On-Demand Network Systems and Services Conference (WONS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/WONS57325.2023.10061953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Vehicle-to-Infrastructure Communication for Real-Time Object Detection in Autonomous Driving
Environmental perception is a key element of autonomous driving because the information received from the perception module influences core driving decisions. An outstanding challenge in real-time perception for autonomous driving lies in finding the best trade-off between detection quality and latency. Major constraints on both computation and power have to be taken into account for real-time perception in autonomous vehicles. Larger object detection models tend to produce the best results, but are also slower at runtime. Since the most accurate detectors cannot run in real-time locally, we investigate the possibility of offloading computation to edge and cloud platforms, which are less resource-constrained. We create a synthetic dataset to train an object detection model and evaluate different offloading strategies. Using real hardware and network simulations, we compare different trade-offs between prediction quality and end-to-end delay. Since sending raw frames over the network implies additional transmission delays, we also explore the use of JPEG compression at varying qualities and measure its impact on prediction metrics. We show that models with adequate compression can be run in real-time on the cloud while outperforming local detection performance.