资源共享Reed-Solomon编码器的高效并行架构

Yok Jye Tang, Xinmiao Zhang
{"title":"资源共享Reed-Solomon编码器的高效并行架构","authors":"Yok Jye Tang, Xinmiao Zhang","doi":"10.1109/SiPS52927.2021.00035","DOIUrl":null,"url":null,"abstract":"Reed-Solomon (RS) codes are adopted in many digital communication and storage systems to ensure data reliability. For many of these systems, the encoder and decoder are not active at the same time. In previous designs, RS encoders implemented as linear feedback shift registers in a concatenated structure are reused to compute the syndromes so that the decoder complexity is reduced. However, the parallel versions of such encoders have very long critical path and hence can not achieve high speed. This paper proposes a new parallel resource-shareable RS encoder architecture based on the Chinese Remainder Theorem (CRT). The generator polynomial of RS codes is decomposed into factors of degree one and state transformation is developed to enable the sharing of the hardware units for syndrome computation. As a result, the critical path is reduced to only one multiplier and one adder, regardless of the parallelism. Additionally, by utilizing the property that the degrees of the decomposed polynomial factors are one, optimizations are also developed to greatly simplify the CRT-based encoder. For example encoders of a (255, 229) RS code over GF(28), our proposed design can achieve at least 29% higher efficiency in terms of area-time product for moderate or higher parallelisms compared to the previous resource-shareable RS encoder and traditional parallel RS encoders combined with syndrome computation units that implement the same functionality.","PeriodicalId":103894,"journal":{"name":"2021 IEEE Workshop on Signal Processing Systems (SiPS)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Efficient Parallel Architecture for Resource-Shareable Reed-Solomon Encoder\",\"authors\":\"Yok Jye Tang, Xinmiao Zhang\",\"doi\":\"10.1109/SiPS52927.2021.00035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reed-Solomon (RS) codes are adopted in many digital communication and storage systems to ensure data reliability. For many of these systems, the encoder and decoder are not active at the same time. In previous designs, RS encoders implemented as linear feedback shift registers in a concatenated structure are reused to compute the syndromes so that the decoder complexity is reduced. However, the parallel versions of such encoders have very long critical path and hence can not achieve high speed. This paper proposes a new parallel resource-shareable RS encoder architecture based on the Chinese Remainder Theorem (CRT). The generator polynomial of RS codes is decomposed into factors of degree one and state transformation is developed to enable the sharing of the hardware units for syndrome computation. As a result, the critical path is reduced to only one multiplier and one adder, regardless of the parallelism. Additionally, by utilizing the property that the degrees of the decomposed polynomial factors are one, optimizations are also developed to greatly simplify the CRT-based encoder. For example encoders of a (255, 229) RS code over GF(28), our proposed design can achieve at least 29% higher efficiency in terms of area-time product for moderate or higher parallelisms compared to the previous resource-shareable RS encoder and traditional parallel RS encoders combined with syndrome computation units that implement the same functionality.\",\"PeriodicalId\":103894,\"journal\":{\"name\":\"2021 IEEE Workshop on Signal Processing Systems (SiPS)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Workshop on Signal Processing Systems (SiPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SiPS52927.2021.00035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Workshop on Signal Processing Systems (SiPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SiPS52927.2021.00035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

许多数字通信和存储系统都采用RS码来保证数据的可靠性。对于许多这样的系统,编码器和解码器不是同时活动的。在以前的设计中,RS编码器实现为线性反馈移位寄存器,在串联结构中被重用来计算综合征,从而降低了解码器的复杂性。然而,这种编码器的并行版本有很长的关键路径,因此不能达到很高的速度。本文提出了一种基于中国剩余定理的并行资源共享RS编码器结构。将RS码的生成多项式分解为一级因子,并进行状态变换,实现了硬件单元的共享。因此,不管并行度如何,关键路径被简化为只有一个乘法器和一个加法器。此外,利用分解多项式因子的次数为1的特性,还进行了优化,大大简化了基于crt的编码器。例如,在GF(28)上的(255,229)RS码编码器,与之前的资源共享RS编码器和传统的并行RS编码器(结合综合征计算单元)实现相同功能相比,我们提出的设计在中等或更高并行度的面积-时间积方面可以实现至少29%的效率提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Efficient Parallel Architecture for Resource-Shareable Reed-Solomon Encoder
Reed-Solomon (RS) codes are adopted in many digital communication and storage systems to ensure data reliability. For many of these systems, the encoder and decoder are not active at the same time. In previous designs, RS encoders implemented as linear feedback shift registers in a concatenated structure are reused to compute the syndromes so that the decoder complexity is reduced. However, the parallel versions of such encoders have very long critical path and hence can not achieve high speed. This paper proposes a new parallel resource-shareable RS encoder architecture based on the Chinese Remainder Theorem (CRT). The generator polynomial of RS codes is decomposed into factors of degree one and state transformation is developed to enable the sharing of the hardware units for syndrome computation. As a result, the critical path is reduced to only one multiplier and one adder, regardless of the parallelism. Additionally, by utilizing the property that the degrees of the decomposed polynomial factors are one, optimizations are also developed to greatly simplify the CRT-based encoder. For example encoders of a (255, 229) RS code over GF(28), our proposed design can achieve at least 29% higher efficiency in terms of area-time product for moderate or higher parallelisms compared to the previous resource-shareable RS encoder and traditional parallel RS encoders combined with syndrome computation units that implement the same functionality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信