多智能体系统中的强化学习:具有内部模型能力的模块化模糊方法

Mehmet Kaya, R. Alhajj
{"title":"多智能体系统中的强化学习:具有内部模型能力的模块化模糊方法","authors":"Mehmet Kaya, R. Alhajj","doi":"10.1109/TAI.2002.1180840","DOIUrl":null,"url":null,"abstract":"Most of the methods proposed to improve the learning ability in multiagent systems are not appropriate to more complex multiagent learning problems because the state space of each learning agent grows exponentially in terms of the number of partners present in the environment. We propose a novel and robust multiagent architecture to handle these problems. The architecture is based on a learning fuzzy controller whose rule base is partitioned into several different modules. Each module deals with a particular agent in the environment and the fuzzy controller maps the input fuzzy sets to the output fuzzy sets that represent the state space of each learning module and the action space, respectively. Also, each module uses an internal model table to estimate the action of the other agents. Experimental results show the robustness and effectiveness of the proposed approach.","PeriodicalId":197064,"journal":{"name":"14th IEEE International Conference on Tools with Artificial Intelligence, 2002. (ICTAI 2002). Proceedings.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2002-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Reinforcement learning in multiagent systems: a modular fuzzy approach with internal model capabilities\",\"authors\":\"Mehmet Kaya, R. Alhajj\",\"doi\":\"10.1109/TAI.2002.1180840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most of the methods proposed to improve the learning ability in multiagent systems are not appropriate to more complex multiagent learning problems because the state space of each learning agent grows exponentially in terms of the number of partners present in the environment. We propose a novel and robust multiagent architecture to handle these problems. The architecture is based on a learning fuzzy controller whose rule base is partitioned into several different modules. Each module deals with a particular agent in the environment and the fuzzy controller maps the input fuzzy sets to the output fuzzy sets that represent the state space of each learning module and the action space, respectively. Also, each module uses an internal model table to estimate the action of the other agents. Experimental results show the robustness and effectiveness of the proposed approach.\",\"PeriodicalId\":197064,\"journal\":{\"name\":\"14th IEEE International Conference on Tools with Artificial Intelligence, 2002. (ICTAI 2002). Proceedings.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"14th IEEE International Conference on Tools with Artificial Intelligence, 2002. (ICTAI 2002). Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAI.2002.1180840\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"14th IEEE International Conference on Tools with Artificial Intelligence, 2002. (ICTAI 2002). Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.2002.1180840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

大多数用于提高多智能体系统学习能力的方法不适用于更复杂的多智能体学习问题,因为每个学习智能体的状态空间根据环境中存在的伙伴数量呈指数增长。我们提出了一种新颖且健壮的多智能体体系结构来处理这些问题。该体系结构基于学习模糊控制器,其规则库被划分为几个不同的模块。每个模块处理环境中的特定代理,模糊控制器将输入模糊集映射到分别代表每个学习模块状态空间和动作空间的输出模糊集。此外,每个模块使用一个内部模型表来估计其他代理的动作。实验结果表明了该方法的鲁棒性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reinforcement learning in multiagent systems: a modular fuzzy approach with internal model capabilities
Most of the methods proposed to improve the learning ability in multiagent systems are not appropriate to more complex multiagent learning problems because the state space of each learning agent grows exponentially in terms of the number of partners present in the environment. We propose a novel and robust multiagent architecture to handle these problems. The architecture is based on a learning fuzzy controller whose rule base is partitioned into several different modules. Each module deals with a particular agent in the environment and the fuzzy controller maps the input fuzzy sets to the output fuzzy sets that represent the state space of each learning module and the action space, respectively. Also, each module uses an internal model table to estimate the action of the other agents. Experimental results show the robustness and effectiveness of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信