利用本体增强基于社区的协同推荐

Li Yu
{"title":"利用本体增强基于社区的协同推荐","authors":"Li Yu","doi":"10.1109/WAIM.2008.47","DOIUrl":null,"url":null,"abstract":"Collaborative filtering is an important personalized recommendation technique applied widely in E-commerce. It is not adapted to multi-interest or title recommendation for the 'general neighbourhood' problem which is analyzed in this paper. Based on it, collaborative filtering recommendation based on community is presented by introducing the concept 'community neighbourhood' in the paper. Unfortunately, it results into severer sparsity problem which makes heavy effect on its performance. In order to overcome it, an ontological A-priori score is used to infer user preference and to pre-fill null rating first. After pre-filling using the ontology method, then collaborative filtering based on community is executed based on a dense rating matrix. The experiment shows that collaborative filtering based on community makes generally better performance than traditional method when data is not very sparse, and ontology method can truly enhance collaborative filtering based on community since the sparsity is overcame.","PeriodicalId":217119,"journal":{"name":"2008 The Ninth International Conference on Web-Age Information Management","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Using Ontology to Enhance Collaborative Recommendation Based on Community\",\"authors\":\"Li Yu\",\"doi\":\"10.1109/WAIM.2008.47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Collaborative filtering is an important personalized recommendation technique applied widely in E-commerce. It is not adapted to multi-interest or title recommendation for the 'general neighbourhood' problem which is analyzed in this paper. Based on it, collaborative filtering recommendation based on community is presented by introducing the concept 'community neighbourhood' in the paper. Unfortunately, it results into severer sparsity problem which makes heavy effect on its performance. In order to overcome it, an ontological A-priori score is used to infer user preference and to pre-fill null rating first. After pre-filling using the ontology method, then collaborative filtering based on community is executed based on a dense rating matrix. The experiment shows that collaborative filtering based on community makes generally better performance than traditional method when data is not very sparse, and ontology method can truly enhance collaborative filtering based on community since the sparsity is overcame.\",\"PeriodicalId\":217119,\"journal\":{\"name\":\"2008 The Ninth International Conference on Web-Age Information Management\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 The Ninth International Conference on Web-Age Information Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WAIM.2008.47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 The Ninth International Conference on Web-Age Information Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WAIM.2008.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

协同过滤是电子商务中广泛应用的一种重要的个性化推荐技术。本文所分析的“一般邻域”问题不适合多利益或标题推荐。在此基础上,引入“社区邻域”概念,提出了基于社区的协同过滤推荐。然而,它带来了严重的稀疏性问题,严重影响了它的性能。为了克服这个问题,使用本体先验分数来推断用户偏好并首先预填充空评级。采用本体法预填充后,基于密集评价矩阵进行基于社区的协同过滤。实验表明,在数据不是很稀疏的情况下,基于社区的协同过滤总体上优于传统方法,而本体方法克服了稀疏性,真正增强了基于社区的协同过滤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Ontology to Enhance Collaborative Recommendation Based on Community
Collaborative filtering is an important personalized recommendation technique applied widely in E-commerce. It is not adapted to multi-interest or title recommendation for the 'general neighbourhood' problem which is analyzed in this paper. Based on it, collaborative filtering recommendation based on community is presented by introducing the concept 'community neighbourhood' in the paper. Unfortunately, it results into severer sparsity problem which makes heavy effect on its performance. In order to overcome it, an ontological A-priori score is used to infer user preference and to pre-fill null rating first. After pre-filling using the ontology method, then collaborative filtering based on community is executed based on a dense rating matrix. The experiment shows that collaborative filtering based on community makes generally better performance than traditional method when data is not very sparse, and ontology method can truly enhance collaborative filtering based on community since the sparsity is overcame.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信