qmull - sds @ DIACR-Ita:评估意大利语的无监督历时词汇语义分类(短文)

Rabab Alkhalifa, A. Tsakalidis, A. Zubiaga, Maria Liakata
{"title":"qmull - sds @ DIACR-Ita:评估意大利语的无监督历时词汇语义分类(短文)","authors":"Rabab Alkhalifa, A. Tsakalidis, A. Zubiaga, Maria Liakata","doi":"10.4000/BOOKS.AACCADEMIA.7638","DOIUrl":null,"url":null,"abstract":"In this paper, we present the results and main findings of our system for the DIACR-ITA 2020 Task. Our system focuses on using variations of training sets and different semantic detection methods. The task involves training, aligning and predicting a word's vector change from two diachronic Italian corpora. We demonstrate that using Temporal Word Embeddings with a Compass C-BOW model is more effective compared to different approaches including Logistic Regression and a Feed Forward Neural Network using accuracy. Our model ranked 3rd with an accuracy of 83.3%.","PeriodicalId":184564,"journal":{"name":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","volume":"8 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"QMUL-SDS @ DIACR-Ita: Evaluating Unsupervised Diachronic Lexical Semantics Classification in Italian (short paper)\",\"authors\":\"Rabab Alkhalifa, A. Tsakalidis, A. Zubiaga, Maria Liakata\",\"doi\":\"10.4000/BOOKS.AACCADEMIA.7638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present the results and main findings of our system for the DIACR-ITA 2020 Task. Our system focuses on using variations of training sets and different semantic detection methods. The task involves training, aligning and predicting a word's vector change from two diachronic Italian corpora. We demonstrate that using Temporal Word Embeddings with a Compass C-BOW model is more effective compared to different approaches including Logistic Regression and a Feed Forward Neural Network using accuracy. Our model ranked 3rd with an accuracy of 83.3%.\",\"PeriodicalId\":184564,\"journal\":{\"name\":\"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020\",\"volume\":\"8 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4000/BOOKS.AACCADEMIA.7638\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4000/BOOKS.AACCADEMIA.7638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们介绍了我们的系统在DIACR-ITA 2020任务中的结果和主要发现。我们的系统侧重于使用不同的训练集和不同的语义检测方法。这项任务包括训练、对齐和预测两个历时意大利语语料库中单词向量的变化。我们证明,与其他方法(包括逻辑回归和使用精度的前馈神经网络)相比,使用Compass C-BOW模型的时间词嵌入更有效。我们的模型以83.3%的准确率排名第三。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
QMUL-SDS @ DIACR-Ita: Evaluating Unsupervised Diachronic Lexical Semantics Classification in Italian (short paper)
In this paper, we present the results and main findings of our system for the DIACR-ITA 2020 Task. Our system focuses on using variations of training sets and different semantic detection methods. The task involves training, aligning and predicting a word's vector change from two diachronic Italian corpora. We demonstrate that using Temporal Word Embeddings with a Compass C-BOW model is more effective compared to different approaches including Logistic Regression and a Feed Forward Neural Network using accuracy. Our model ranked 3rd with an accuracy of 83.3%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信