使用福克-普朗克扩散的核化松弛标记

Hongfang Wang, E. Hancock
{"title":"使用福克-普朗克扩散的核化松弛标记","authors":"Hongfang Wang, E. Hancock","doi":"10.1109/ICIAP.2007.84","DOIUrl":null,"url":null,"abstract":"This paper shows how the relaxation labelling problem can be formulated as a diffusion process on a support graph using the Fokker-Planck equation. We abstract the labelling problem using a support graph with each graph node representing a possible object-label assignment and the edge weights representing label compatibilities. Initial object-label probabilities are updated using a relaxation-like process. The update equation is the solution of the Fokker-Planck equation, and is governed by an infinitesimal generator matrix computed from the edge-weights of the support graph. Iterative updating of the label probabilities can be effected using the eigenvalues and eigenvectors of the generator matrix. We illustrate the newly developed relaxation process for the applications of data classification.","PeriodicalId":118466,"journal":{"name":"14th International Conference on Image Analysis and Processing (ICIAP 2007)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kernelised Relaxation Labelling using Fokker-Planck Diffusion\",\"authors\":\"Hongfang Wang, E. Hancock\",\"doi\":\"10.1109/ICIAP.2007.84\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper shows how the relaxation labelling problem can be formulated as a diffusion process on a support graph using the Fokker-Planck equation. We abstract the labelling problem using a support graph with each graph node representing a possible object-label assignment and the edge weights representing label compatibilities. Initial object-label probabilities are updated using a relaxation-like process. The update equation is the solution of the Fokker-Planck equation, and is governed by an infinitesimal generator matrix computed from the edge-weights of the support graph. Iterative updating of the label probabilities can be effected using the eigenvalues and eigenvectors of the generator matrix. We illustrate the newly developed relaxation process for the applications of data classification.\",\"PeriodicalId\":118466,\"journal\":{\"name\":\"14th International Conference on Image Analysis and Processing (ICIAP 2007)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"14th International Conference on Image Analysis and Processing (ICIAP 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIAP.2007.84\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"14th International Conference on Image Analysis and Processing (ICIAP 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAP.2007.84","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文用Fokker-Planck方程将松弛标记问题表述为支持图上的扩散过程。我们使用支持图抽象标记问题,每个图节点表示一个可能的对象标签分配,边缘权重表示标签兼容性。初始对象标签概率使用类似松弛的过程进行更新。更新方程是Fokker-Planck方程的解,由由支持图的边权计算得到的无限小生成器矩阵控制。利用生成矩阵的特征值和特征向量可以实现标签概率的迭代更新。我们说明了新开发的松弛过程在数据分类中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kernelised Relaxation Labelling using Fokker-Planck Diffusion
This paper shows how the relaxation labelling problem can be formulated as a diffusion process on a support graph using the Fokker-Planck equation. We abstract the labelling problem using a support graph with each graph node representing a possible object-label assignment and the edge weights representing label compatibilities. Initial object-label probabilities are updated using a relaxation-like process. The update equation is the solution of the Fokker-Planck equation, and is governed by an infinitesimal generator matrix computed from the edge-weights of the support graph. Iterative updating of the label probabilities can be effected using the eigenvalues and eigenvectors of the generator matrix. We illustrate the newly developed relaxation process for the applications of data classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信