第一:快速交互式属性子图匹配

Boxin Du, Si Zhang, Nan Cao, Hanghang Tong
{"title":"第一:快速交互式属性子图匹配","authors":"Boxin Du, Si Zhang, Nan Cao, Hanghang Tong","doi":"10.1145/3097983.3098040","DOIUrl":null,"url":null,"abstract":"Attributed subgraph matching is a powerful tool for explorative mining of large attributed networks. In many applications (e.g., network science of teams, intelligence analysis, finance informatics), the user might not know what exactly s/he is looking for, and thus require the user to constantly revise the initial query graph based on what s/he finds from the current matching results. A major bottleneck in such an interactive matching scenario is the efficiency, as simply rerunning the matching algorithm on the revised query graph is computationally prohibitive. In this paper, we propose a family of effective and efficient algorithms (FIRST) to support interactive attributed subgraph matching. There are two key ideas behind the proposed methods. The first is to recast the attributed subgraph matching problem as a cross-network node similarity problem, whose major computation lies in solving a Sylvester equation for the query graph and the underlying data graph. The second key idea is to explore the smoothness between the initial and revised queries, which allows us to solve the new/updated Sylvester equation incrementally, without re-solving it from scratch. Experimental results show that our method can achieve (1) up to 16x speed-up when applying on networks with 6M$+$ nodes; (2) preserving more than 90% accuracy compared with existing methods; and (3) scales linearly with respect to the size of the data graph.","PeriodicalId":314049,"journal":{"name":"Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":"{\"title\":\"FIRST: Fast Interactive Attributed Subgraph Matching\",\"authors\":\"Boxin Du, Si Zhang, Nan Cao, Hanghang Tong\",\"doi\":\"10.1145/3097983.3098040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Attributed subgraph matching is a powerful tool for explorative mining of large attributed networks. In many applications (e.g., network science of teams, intelligence analysis, finance informatics), the user might not know what exactly s/he is looking for, and thus require the user to constantly revise the initial query graph based on what s/he finds from the current matching results. A major bottleneck in such an interactive matching scenario is the efficiency, as simply rerunning the matching algorithm on the revised query graph is computationally prohibitive. In this paper, we propose a family of effective and efficient algorithms (FIRST) to support interactive attributed subgraph matching. There are two key ideas behind the proposed methods. The first is to recast the attributed subgraph matching problem as a cross-network node similarity problem, whose major computation lies in solving a Sylvester equation for the query graph and the underlying data graph. The second key idea is to explore the smoothness between the initial and revised queries, which allows us to solve the new/updated Sylvester equation incrementally, without re-solving it from scratch. Experimental results show that our method can achieve (1) up to 16x speed-up when applying on networks with 6M$+$ nodes; (2) preserving more than 90% accuracy compared with existing methods; and (3) scales linearly with respect to the size of the data graph.\",\"PeriodicalId\":314049,\"journal\":{\"name\":\"Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3097983.3098040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3097983.3098040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

摘要

属性子图匹配是大型属性网络探索性挖掘的有力工具。在许多应用中(例如,团队网络科学、情报分析、金融信息学),用户可能不知道他/她到底在寻找什么,因此需要用户根据他/她从当前匹配结果中找到的内容不断修改初始查询图。这种交互式匹配场景的一个主要瓶颈是效率,因为简单地在修改后的查询图上重新运行匹配算法在计算上是令人望而却步的。在本文中,我们提出了一组有效且高效的算法(FIRST)来支持交互式属性子图匹配。提出的方法背后有两个关键思想。第一种是将属性子图匹配问题重构为跨网络节点相似度问题,其主要计算是求解查询图和底层数据图的Sylvester方程。第二个关键思想是探索初始查询和修改后的查询之间的平滑性,这使我们能够逐步解决新的/更新的Sylvester方程,而不必从头开始重新解决它。实验结果表明:(1)应用于600万$+$节点的网络时,提速可达16倍;(2)与现有方法相比,准确度保持在90%以上;(3)与数据图的大小成线性关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FIRST: Fast Interactive Attributed Subgraph Matching
Attributed subgraph matching is a powerful tool for explorative mining of large attributed networks. In many applications (e.g., network science of teams, intelligence analysis, finance informatics), the user might not know what exactly s/he is looking for, and thus require the user to constantly revise the initial query graph based on what s/he finds from the current matching results. A major bottleneck in such an interactive matching scenario is the efficiency, as simply rerunning the matching algorithm on the revised query graph is computationally prohibitive. In this paper, we propose a family of effective and efficient algorithms (FIRST) to support interactive attributed subgraph matching. There are two key ideas behind the proposed methods. The first is to recast the attributed subgraph matching problem as a cross-network node similarity problem, whose major computation lies in solving a Sylvester equation for the query graph and the underlying data graph. The second key idea is to explore the smoothness between the initial and revised queries, which allows us to solve the new/updated Sylvester equation incrementally, without re-solving it from scratch. Experimental results show that our method can achieve (1) up to 16x speed-up when applying on networks with 6M$+$ nodes; (2) preserving more than 90% accuracy compared with existing methods; and (3) scales linearly with respect to the size of the data graph.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信