虚二次整数的PSL\_2的等变k -同调

Alexander D. Rahm
{"title":"虚二次整数的PSL\\_2的等变k -同调","authors":"Alexander D. Rahm","doi":"10.5802/AIF.3047","DOIUrl":null,"url":null,"abstract":"We establish formulae for the part due to torsion of the equivariant K-homology of all the Bianchi groups (PSL\\_2 of the imaginary quadratic integers), in terms of elementary number-theoretic quantities. To achieve this, we introduce a novel technique in the computation of Bredon homology: representation ring splitting, which allows us to adapt the recent technique of torsion subcomplex reduction from group homology to Bredon homology.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"On the equivariant K-homology of PSL\\\\_2 of the imaginary quadratic integers\",\"authors\":\"Alexander D. Rahm\",\"doi\":\"10.5802/AIF.3047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish formulae for the part due to torsion of the equivariant K-homology of all the Bianchi groups (PSL\\\\_2 of the imaginary quadratic integers), in terms of elementary number-theoretic quantities. To achieve this, we introduce a novel technique in the computation of Bredon homology: representation ring splitting, which allows us to adapt the recent technique of torsion subcomplex reduction from group homology to Bredon homology.\",\"PeriodicalId\":309711,\"journal\":{\"name\":\"arXiv: K-Theory and Homology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/AIF.3047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/AIF.3047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们用初等数论量建立了所有Bianchi群(虚二次整数的PSL\_2)的等变k -同调的挠性部分的公式。为了实现这一目标,我们在Bredon同调的计算中引入了一种新的技术:表示环分裂,它允许我们将最近的从群同调的扭转子复约技术应用到Bredon同调中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the equivariant K-homology of PSL\_2 of the imaginary quadratic integers
We establish formulae for the part due to torsion of the equivariant K-homology of all the Bianchi groups (PSL\_2 of the imaginary quadratic integers), in terms of elementary number-theoretic quantities. To achieve this, we introduce a novel technique in the computation of Bredon homology: representation ring splitting, which allows us to adapt the recent technique of torsion subcomplex reduction from group homology to Bredon homology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信