压缩测量稀疏度估计的经验特征值阈值检验

A. Lavrenko, F. Roemer, G. D. Galdo, R. Thomä, O. Arikan
{"title":"压缩测量稀疏度估计的经验特征值阈值检验","authors":"A. Lavrenko, F. Roemer, G. D. Galdo, R. Thomä, O. Arikan","doi":"10.5281/ZENODO.44108","DOIUrl":null,"url":null,"abstract":"Compressed sensing allows for a significant reduction of the number of measurements when the signal of interest is of a sparse nature. Most computationally efficient algorithms for signal recovery rely on some knowledge of the sparsity level, i.e., the number of non-zero elements. However, the sparsity level is often not known a priori and can even vary with time. In this contribution we show that it is possible to estimate the sparsity level directly in the compressed domain, provided that multiple independent observations are available. In fact, one can use classical model order selection algorithms for this purpose. Nevertheless, due to the influence of the measurement process they may not perform satisfactorily in the compressed sensing setup. To overcome this drawback, we propose an approach which exploits the empirical distributions of the noise eigenvalues. We demonstrate its superior performance compared to state-of-the-art model order estimation algorithms numerically.","PeriodicalId":198408,"journal":{"name":"2014 22nd European Signal Processing Conference (EUSIPCO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"An empirical eigenvalue-threshold test for sparsity level estimation from compressed measurements\",\"authors\":\"A. Lavrenko, F. Roemer, G. D. Galdo, R. Thomä, O. Arikan\",\"doi\":\"10.5281/ZENODO.44108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compressed sensing allows for a significant reduction of the number of measurements when the signal of interest is of a sparse nature. Most computationally efficient algorithms for signal recovery rely on some knowledge of the sparsity level, i.e., the number of non-zero elements. However, the sparsity level is often not known a priori and can even vary with time. In this contribution we show that it is possible to estimate the sparsity level directly in the compressed domain, provided that multiple independent observations are available. In fact, one can use classical model order selection algorithms for this purpose. Nevertheless, due to the influence of the measurement process they may not perform satisfactorily in the compressed sensing setup. To overcome this drawback, we propose an approach which exploits the empirical distributions of the noise eigenvalues. We demonstrate its superior performance compared to state-of-the-art model order estimation algorithms numerically.\",\"PeriodicalId\":198408,\"journal\":{\"name\":\"2014 22nd European Signal Processing Conference (EUSIPCO)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 22nd European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.44108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.44108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

当感兴趣的信号具有稀疏性质时,压缩感知允许显著减少测量次数。大多数计算效率高的信号恢复算法依赖于对稀疏度水平的一些了解,即非零元素的数量。然而,稀疏度级别通常不是先验的,甚至可能随时间而变化。在这一贡献中,我们表明,只要有多个独立的观测值可用,就可以直接在压缩域中估计稀疏度水平。事实上,我们可以使用经典的模型顺序选择算法来实现这个目的。然而,由于测量过程的影响,它们在压缩感知设置中可能无法令人满意地执行。为了克服这一缺点,我们提出了一种利用噪声特征值的经验分布的方法。我们在数值上证明了与最先进的模型阶估计算法相比,其优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An empirical eigenvalue-threshold test for sparsity level estimation from compressed measurements
Compressed sensing allows for a significant reduction of the number of measurements when the signal of interest is of a sparse nature. Most computationally efficient algorithms for signal recovery rely on some knowledge of the sparsity level, i.e., the number of non-zero elements. However, the sparsity level is often not known a priori and can even vary with time. In this contribution we show that it is possible to estimate the sparsity level directly in the compressed domain, provided that multiple independent observations are available. In fact, one can use classical model order selection algorithms for this purpose. Nevertheless, due to the influence of the measurement process they may not perform satisfactorily in the compressed sensing setup. To overcome this drawback, we propose an approach which exploits the empirical distributions of the noise eigenvalues. We demonstrate its superior performance compared to state-of-the-art model order estimation algorithms numerically.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信