面向社交媒体的多视图摘要框架

Alen Chih-Yuan Li, S. Chun, J. Geller
{"title":"面向社交媒体的多视图摘要框架","authors":"Alen Chih-Yuan Li, S. Chun, J. Geller","doi":"10.32473/flairs.36.133169","DOIUrl":null,"url":null,"abstract":"Social Media provide voluminous posts about current topics and events. When a user desires to investigate a popular topic, it is not feasible as there are many posts. Besides, posts show different biases, viewpoints, perspectives, and emotions. Thus, providing summaries of large post sets with different viewpoints is necessary. We develop a multiple view summa-rization framework to generate different view-based summar-ies of Twitter posts. Users can apply different methods to generate summaries: 1) Entity-centered, 2) Social feature-based, 3) Event-based summarization, using all triple embed-dings and 4) Sentiment-based summarization to generate summaries of positive or negative views of tweets. These summarization methods are compared with BertSum, SBert, T5, and Bart-Large-CNN with a gold standard dataset. Our results, based on Rouge scores, were better than these pub-lished extractive and abstractive summarization models.","PeriodicalId":302103,"journal":{"name":"The International FLAIRS Conference Proceedings","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multiple View Summarization Framework for Social Media\",\"authors\":\"Alen Chih-Yuan Li, S. Chun, J. Geller\",\"doi\":\"10.32473/flairs.36.133169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social Media provide voluminous posts about current topics and events. When a user desires to investigate a popular topic, it is not feasible as there are many posts. Besides, posts show different biases, viewpoints, perspectives, and emotions. Thus, providing summaries of large post sets with different viewpoints is necessary. We develop a multiple view summa-rization framework to generate different view-based summar-ies of Twitter posts. Users can apply different methods to generate summaries: 1) Entity-centered, 2) Social feature-based, 3) Event-based summarization, using all triple embed-dings and 4) Sentiment-based summarization to generate summaries of positive or negative views of tweets. These summarization methods are compared with BertSum, SBert, T5, and Bart-Large-CNN with a gold standard dataset. Our results, based on Rouge scores, were better than these pub-lished extractive and abstractive summarization models.\",\"PeriodicalId\":302103,\"journal\":{\"name\":\"The International FLAIRS Conference Proceedings\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International FLAIRS Conference Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32473/flairs.36.133169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International FLAIRS Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32473/flairs.36.133169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

社交媒体提供了大量关于当前话题和事件的帖子。当一个用户想要调查一个热门话题时,这是不可行的,因为有很多帖子。此外,帖子显示了不同的偏见、观点、观点和情绪。因此,提供具有不同观点的大型帖子集的摘要是必要的。我们开发了一个多视图摘要框架来生成不同的基于视图的Twitter帖子摘要。用户可以使用不同的方法生成摘要:1)以实体为中心,2)基于社会特征,3)基于事件的摘要,使用所有三重嵌入,4)基于情感的摘要,生成tweet的正面或负面观点摘要。这些总结方法与BertSum, SBert, T5和Bart-Large-CNN进行了黄金标准数据集的比较。基于Rouge评分,我们的结果优于这些已发表的提取和抽象总结模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple View Summarization Framework for Social Media
Social Media provide voluminous posts about current topics and events. When a user desires to investigate a popular topic, it is not feasible as there are many posts. Besides, posts show different biases, viewpoints, perspectives, and emotions. Thus, providing summaries of large post sets with different viewpoints is necessary. We develop a multiple view summa-rization framework to generate different view-based summar-ies of Twitter posts. Users can apply different methods to generate summaries: 1) Entity-centered, 2) Social feature-based, 3) Event-based summarization, using all triple embed-dings and 4) Sentiment-based summarization to generate summaries of positive or negative views of tweets. These summarization methods are compared with BertSum, SBert, T5, and Bart-Large-CNN with a gold standard dataset. Our results, based on Rouge scores, were better than these pub-lished extractive and abstractive summarization models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信