基于向量自回归的大陆蜜网网络安全趋势预测

Xing Ling, Yeonwoo Rho, C. Ten
{"title":"基于向量自回归的大陆蜜网网络安全趋势预测","authors":"Xing Ling, Yeonwoo Rho, C. Ten","doi":"10.1109/ISGTEurope.2019.8905639","DOIUrl":null,"url":null,"abstract":"The deployment of honeynets from around world is intended to lure attackers into their networks and hence their footprint can be extracted and studied. This global trend can be correlated based on publicly available statistics. This paper proposes a statistical analysis to identify a geospatial and temporal patterns in the cyberattacks and use this knowledge to predict future attack trend. Using a publicly available honeypot data, this work aims to (i) incroporate long range dependence in the analysis of the number of cyber-attacks, which may be a result of spread of malware agents, (ii) propose a measure on how to determine whether or not to consider dependence structure between different honeypot hosts, and (iii) establish a modeling tool that would be intuitive in a honeynet, where honeypot hosts are closely connected and related. The proposed vector autoregression approach reveals the dependencies among honeypots.","PeriodicalId":305933,"journal":{"name":"2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Predicting Global Trend of Cybersecurity on Continental Honeynets Using Vector Autoregression\",\"authors\":\"Xing Ling, Yeonwoo Rho, C. Ten\",\"doi\":\"10.1109/ISGTEurope.2019.8905639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The deployment of honeynets from around world is intended to lure attackers into their networks and hence their footprint can be extracted and studied. This global trend can be correlated based on publicly available statistics. This paper proposes a statistical analysis to identify a geospatial and temporal patterns in the cyberattacks and use this knowledge to predict future attack trend. Using a publicly available honeypot data, this work aims to (i) incroporate long range dependence in the analysis of the number of cyber-attacks, which may be a result of spread of malware agents, (ii) propose a measure on how to determine whether or not to consider dependence structure between different honeypot hosts, and (iii) establish a modeling tool that would be intuitive in a honeynet, where honeypot hosts are closely connected and related. The proposed vector autoregression approach reveals the dependencies among honeypots.\",\"PeriodicalId\":305933,\"journal\":{\"name\":\"2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe)\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISGTEurope.2019.8905639\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGTEurope.2019.8905639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

部署来自世界各地的蜜网是为了引诱攻击者进入他们的网络,这样他们的足迹就可以被提取和研究。这一全球趋势可以根据公开的统计数据进行关联。本文提出了一种统计分析方法来识别网络攻击的地理空间和时间模式,并利用这些知识来预测未来的攻击趋势。利用公开可用的蜜罐数据,本工作旨在(i)将远程依赖纳入网络攻击数量的分析中,这可能是恶意软件代理传播的结果,(ii)提出如何确定是否考虑不同蜜罐主机之间的依赖结构的措施,以及(iii)建立一个直观的建模工具,在蜜罐主机紧密相连和相关的蜜罐网络中。提出的向量自回归方法揭示了蜜罐之间的依赖关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Global Trend of Cybersecurity on Continental Honeynets Using Vector Autoregression
The deployment of honeynets from around world is intended to lure attackers into their networks and hence their footprint can be extracted and studied. This global trend can be correlated based on publicly available statistics. This paper proposes a statistical analysis to identify a geospatial and temporal patterns in the cyberattacks and use this knowledge to predict future attack trend. Using a publicly available honeypot data, this work aims to (i) incroporate long range dependence in the analysis of the number of cyber-attacks, which may be a result of spread of malware agents, (ii) propose a measure on how to determine whether or not to consider dependence structure between different honeypot hosts, and (iii) establish a modeling tool that would be intuitive in a honeynet, where honeypot hosts are closely connected and related. The proposed vector autoregression approach reveals the dependencies among honeypots.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信