{"title":"一阶具有比例和常数参数的时滞微分方程组的Charlier级数解","authors":"Ömür Kıvanç Kürkçü, Mehmet Sezer","doi":"10.52460/src.2022.004","DOIUrl":null,"url":null,"abstract":"This study is devoted to obtaining the Charlier series solutions of first order delay differential equations involving proportional and constant arguments by employing an inventive numerical method dependent upon a collaboration of matrix structures derived from the parametric Charlier polynomial. The method essentially conducts the conversion of the unknown terms into a unique matrix equation at the collocation points, which yields a direct computation for these stiff equations. Two illustrative examples are included to test the accuracy and efficiency of the method. According to the investigation of the graphical and numerical results, the method holds fast, inventive and accurate computation, regularizing the matrix forms in compliance with the equations in question.","PeriodicalId":400190,"journal":{"name":"Scientific Research Communications","volume":"569 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Charlier Series Solutions of Systems of First Order Delay Differential Equations with Proportional and Constant Arguments\",\"authors\":\"Ömür Kıvanç Kürkçü, Mehmet Sezer\",\"doi\":\"10.52460/src.2022.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study is devoted to obtaining the Charlier series solutions of first order delay differential equations involving proportional and constant arguments by employing an inventive numerical method dependent upon a collaboration of matrix structures derived from the parametric Charlier polynomial. The method essentially conducts the conversion of the unknown terms into a unique matrix equation at the collocation points, which yields a direct computation for these stiff equations. Two illustrative examples are included to test the accuracy and efficiency of the method. According to the investigation of the graphical and numerical results, the method holds fast, inventive and accurate computation, regularizing the matrix forms in compliance with the equations in question.\",\"PeriodicalId\":400190,\"journal\":{\"name\":\"Scientific Research Communications\",\"volume\":\"569 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Research Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52460/src.2022.004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Research Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52460/src.2022.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Charlier Series Solutions of Systems of First Order Delay Differential Equations with Proportional and Constant Arguments
This study is devoted to obtaining the Charlier series solutions of first order delay differential equations involving proportional and constant arguments by employing an inventive numerical method dependent upon a collaboration of matrix structures derived from the parametric Charlier polynomial. The method essentially conducts the conversion of the unknown terms into a unique matrix equation at the collocation points, which yields a direct computation for these stiff equations. Two illustrative examples are included to test the accuracy and efficiency of the method. According to the investigation of the graphical and numerical results, the method holds fast, inventive and accurate computation, regularizing the matrix forms in compliance with the equations in question.