{"title":"利用深度学习从脑血流变化中对受试者进行性别分类","authors":"T. Hiroyasu, K. Hanawa, U. Yamamoto","doi":"10.1109/CIDM.2014.7008672","DOIUrl":null,"url":null,"abstract":"In this study, using Deep Learning, the gender of subjects is classified the cerebral blood flow changes that are measured by fNIRS. It is reported that cerebral blood flow changes are triggered by brain activities. Thus, if this classification has a high searching accuracy, gender classification should be related to brain activities. In the experiment, fNIRS data are derived from subjects who perform a memory task in white noise environment. From the results, it is confirmed that the learning classifier exhibits high accuracy. This fact suggests that there exists a relation between cerebral blood flow changes and biological information.","PeriodicalId":117542,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Gender classification of subjects from cerebral blood flow changes using Deep Learning\",\"authors\":\"T. Hiroyasu, K. Hanawa, U. Yamamoto\",\"doi\":\"10.1109/CIDM.2014.7008672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, using Deep Learning, the gender of subjects is classified the cerebral blood flow changes that are measured by fNIRS. It is reported that cerebral blood flow changes are triggered by brain activities. Thus, if this classification has a high searching accuracy, gender classification should be related to brain activities. In the experiment, fNIRS data are derived from subjects who perform a memory task in white noise environment. From the results, it is confirmed that the learning classifier exhibits high accuracy. This fact suggests that there exists a relation between cerebral blood flow changes and biological information.\",\"PeriodicalId\":117542,\"journal\":{\"name\":\"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIDM.2014.7008672\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIDM.2014.7008672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Gender classification of subjects from cerebral blood flow changes using Deep Learning
In this study, using Deep Learning, the gender of subjects is classified the cerebral blood flow changes that are measured by fNIRS. It is reported that cerebral blood flow changes are triggered by brain activities. Thus, if this classification has a high searching accuracy, gender classification should be related to brain activities. In the experiment, fNIRS data are derived from subjects who perform a memory task in white noise environment. From the results, it is confirmed that the learning classifier exhibits high accuracy. This fact suggests that there exists a relation between cerebral blood flow changes and biological information.