基于高斯风速预测的MPC风力发电机组负荷缓解

Yanhua Liu, R. Patton, S. Shi
{"title":"基于高斯风速预测的MPC风力发电机组负荷缓解","authors":"Yanhua Liu, R. Patton, S. Shi","doi":"10.1109/CONTROL.2018.8516882","DOIUrl":null,"url":null,"abstract":"An important control challenge for large wind turbines is to maximize the power capture whilst at the same time mitigating against potential fatigue damage. It is now quite well understood that this challenge may be beyond the capability of classical controllers, even when individual pitch actuation is considered. Recent research shows that preview controllers requiring future wind speed knowledge will offer an enhanced combination of good load mitigation and power capture performance. In this context, some preview control schemes use future wind speed prediction data generated by Light Detection and Ranging (LiDAR) systems. However, LiDAR devices tend to be expensive and may not always be available for individual wind turbines. This paper shows how accurate short-time wind speed data can be predicted from past measurements using a Gaussian Process (GP) model based on Matern class kernel. The short-time wind speed prediction is combined with model predictive control (MPC) and detailed simulations are carried out using the FAST NREL 5MW wind turbine model.","PeriodicalId":266112,"journal":{"name":"2018 UKACC 12th International Conference on Control (CONTROL)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Wind Turbine Load Mitigation Using MPC with Gaussian Wind Speed Prediction\",\"authors\":\"Yanhua Liu, R. Patton, S. Shi\",\"doi\":\"10.1109/CONTROL.2018.8516882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An important control challenge for large wind turbines is to maximize the power capture whilst at the same time mitigating against potential fatigue damage. It is now quite well understood that this challenge may be beyond the capability of classical controllers, even when individual pitch actuation is considered. Recent research shows that preview controllers requiring future wind speed knowledge will offer an enhanced combination of good load mitigation and power capture performance. In this context, some preview control schemes use future wind speed prediction data generated by Light Detection and Ranging (LiDAR) systems. However, LiDAR devices tend to be expensive and may not always be available for individual wind turbines. This paper shows how accurate short-time wind speed data can be predicted from past measurements using a Gaussian Process (GP) model based on Matern class kernel. The short-time wind speed prediction is combined with model predictive control (MPC) and detailed simulations are carried out using the FAST NREL 5MW wind turbine model.\",\"PeriodicalId\":266112,\"journal\":{\"name\":\"2018 UKACC 12th International Conference on Control (CONTROL)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 UKACC 12th International Conference on Control (CONTROL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CONTROL.2018.8516882\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 UKACC 12th International Conference on Control (CONTROL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONTROL.2018.8516882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

对于大型风力涡轮机来说,一个重要的控制挑战是最大限度地获取能量,同时减轻潜在的疲劳损伤。现在已经很清楚,即使考虑到单个螺距驱动,这种挑战也可能超出传统控制器的能力。最近的研究表明,需要未来风速知识的预览控制器将提供良好的负载缓解和电力捕获性能的增强组合。在这种情况下,一些预览控制方案使用由光探测和测距(LiDAR)系统生成的未来风速预测数据。然而,激光雷达设备往往很昂贵,可能并不总是适用于单个风力涡轮机。本文展示了如何使用基于matn类核的高斯过程(GP)模型从过去的测量中预测准确的短时间风速数据。将短时风速预测与模型预测控制(MPC)相结合,利用FAST NREL 5MW风力机模型进行了详细的仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wind Turbine Load Mitigation Using MPC with Gaussian Wind Speed Prediction
An important control challenge for large wind turbines is to maximize the power capture whilst at the same time mitigating against potential fatigue damage. It is now quite well understood that this challenge may be beyond the capability of classical controllers, even when individual pitch actuation is considered. Recent research shows that preview controllers requiring future wind speed knowledge will offer an enhanced combination of good load mitigation and power capture performance. In this context, some preview control schemes use future wind speed prediction data generated by Light Detection and Ranging (LiDAR) systems. However, LiDAR devices tend to be expensive and may not always be available for individual wind turbines. This paper shows how accurate short-time wind speed data can be predicted from past measurements using a Gaussian Process (GP) model based on Matern class kernel. The short-time wind speed prediction is combined with model predictive control (MPC) and detailed simulations are carried out using the FAST NREL 5MW wind turbine model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信