面向可视化编程的结构数据图语法归纳

Keven Ates, J. Kukluk, L. Holder, D. Cook, Kang Zhang
{"title":"面向可视化编程的结构数据图语法归纳","authors":"Keven Ates, J. Kukluk, L. Holder, D. Cook, Kang Zhang","doi":"10.1109/ICTAI.2006.61","DOIUrl":null,"url":null,"abstract":"Computer programs that can be expressed in two or more dimensions are typically called visual programs. The underlying theories of visual programming languages involve graph grammars. As graph grammars are usually constructed manually, construction can be a time-consuming process that demands technical knowledge. Therefore, a technique for automatically constructing graph grammars - at least in part - is desirable. An induction method is given to infer node replacement graph grammars. The method operates on labeled graphs of broad applicability. It is evaluated by its performance on inferring graph grammars from various structural representations. The correctness of an inferred grammar is verified by parsing graphs not present in the training set","PeriodicalId":169424,"journal":{"name":"2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Graph Grammar Induction on Structural Data for Visual Programming\",\"authors\":\"Keven Ates, J. Kukluk, L. Holder, D. Cook, Kang Zhang\",\"doi\":\"10.1109/ICTAI.2006.61\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computer programs that can be expressed in two or more dimensions are typically called visual programs. The underlying theories of visual programming languages involve graph grammars. As graph grammars are usually constructed manually, construction can be a time-consuming process that demands technical knowledge. Therefore, a technique for automatically constructing graph grammars - at least in part - is desirable. An induction method is given to infer node replacement graph grammars. The method operates on labeled graphs of broad applicability. It is evaluated by its performance on inferring graph grammars from various structural representations. The correctness of an inferred grammar is verified by parsing graphs not present in the training set\",\"PeriodicalId\":169424,\"journal\":{\"name\":\"2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2006.61\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2006.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

可以用二维或多维度表示的计算机程序通常称为可视化程序。可视化编程语言的基本理论涉及图语法。由于图语法通常是手动构建的,因此构建可能是一个耗时的过程,需要技术知识。因此,需要一种自动构造图语法的技术(至少部分地)。给出了一种推断节点替换图语法的归纳方法。该方法适用于具有广泛适用性的标记图。通过从各种结构表示中推断图语法的性能来评估它。通过解析训练集中不存在的图来验证推断语法的正确性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graph Grammar Induction on Structural Data for Visual Programming
Computer programs that can be expressed in two or more dimensions are typically called visual programs. The underlying theories of visual programming languages involve graph grammars. As graph grammars are usually constructed manually, construction can be a time-consuming process that demands technical knowledge. Therefore, a technique for automatically constructing graph grammars - at least in part - is desirable. An induction method is given to infer node replacement graph grammars. The method operates on labeled graphs of broad applicability. It is evaluated by its performance on inferring graph grammars from various structural representations. The correctness of an inferred grammar is verified by parsing graphs not present in the training set
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信