利用Wikipedia表模式增强知识图谱

Matteo Cannaviccio, Lorenzo Ariemma, Denilson Barbosa, P. Merialdo
{"title":"利用Wikipedia表模式增强知识图谱","authors":"Matteo Cannaviccio, Lorenzo Ariemma, Denilson Barbosa, P. Merialdo","doi":"10.1145/3201463.3201468","DOIUrl":null,"url":null,"abstract":"General solutions to augment Knowledge Graphs (KGs) with facts extracted from Web tables aim to associate pairs of columns from the table with a KG relation based on the matches between pairs of entities in the table and facts in the KG. These approaches suffer from intrinsic limitations due to the incompleteness of the KGs. In this paper we investigate an alternative solution, which leverages the patterns that occur on the schemas of a large corpus of Wikipedia tables. Our experimental evaluation, which used DBpedia as reference KG, demonstrates the advantages of our approach over state-of-the-art solutions and reveals that we can extract more than 1.7M of facts with an estimated accuracy of 0.81 even from tables that do not expose any fact on the KG.","PeriodicalId":365496,"journal":{"name":"Proceedings of the 21st International Workshop on the Web and Databases","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Leveraging Wikipedia Table Schemas for Knowledge Graph Augmentation\",\"authors\":\"Matteo Cannaviccio, Lorenzo Ariemma, Denilson Barbosa, P. Merialdo\",\"doi\":\"10.1145/3201463.3201468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"General solutions to augment Knowledge Graphs (KGs) with facts extracted from Web tables aim to associate pairs of columns from the table with a KG relation based on the matches between pairs of entities in the table and facts in the KG. These approaches suffer from intrinsic limitations due to the incompleteness of the KGs. In this paper we investigate an alternative solution, which leverages the patterns that occur on the schemas of a large corpus of Wikipedia tables. Our experimental evaluation, which used DBpedia as reference KG, demonstrates the advantages of our approach over state-of-the-art solutions and reveals that we can extract more than 1.7M of facts with an estimated accuracy of 0.81 even from tables that do not expose any fact on the KG.\",\"PeriodicalId\":365496,\"journal\":{\"name\":\"Proceedings of the 21st International Workshop on the Web and Databases\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 21st International Workshop on the Web and Databases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3201463.3201468\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st International Workshop on the Web and Databases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3201463.3201468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

利用从Web表中提取的事实增强知识图(Knowledge Graphs, KGs)的一般解决方案旨在将表中的列对与基于表中实体对与KG中的事实对之间的匹配的KG关系相关联。由于知识库的不完整性,这些方法受到了内在的限制。在本文中,我们研究了一种替代解决方案,该解决方案利用了出现在大型维基百科表语料库模式上的模式。我们的实验评估,使用DBpedia作为参考KG,证明了我们的方法比最先进的解决方案的优势,并表明我们可以提取超过1.7M的事实,估计精度为0.81,即使是在KG上没有显示任何事实的表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leveraging Wikipedia Table Schemas for Knowledge Graph Augmentation
General solutions to augment Knowledge Graphs (KGs) with facts extracted from Web tables aim to associate pairs of columns from the table with a KG relation based on the matches between pairs of entities in the table and facts in the KG. These approaches suffer from intrinsic limitations due to the incompleteness of the KGs. In this paper we investigate an alternative solution, which leverages the patterns that occur on the schemas of a large corpus of Wikipedia tables. Our experimental evaluation, which used DBpedia as reference KG, demonstrates the advantages of our approach over state-of-the-art solutions and reveals that we can extract more than 1.7M of facts with an estimated accuracy of 0.81 even from tables that do not expose any fact on the KG.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信