Lefschetz不动点理论中的Reidemeister数

T. Mubeena
{"title":"Lefschetz不动点理论中的Reidemeister数","authors":"T. Mubeena","doi":"10.17993/3ctic.2022.112.61-70","DOIUrl":null,"url":null,"abstract":"Several interesting numbers such as the homotopy invariant numbers the Lefschets number L(f), the Nielsen number N(f), fixed point index i(X, f,U) and the Reidemeister number R(f) play important roles in the study of fixed point theorems. The Nielsen number gives more geometric information about fixed points than other numbers. However the Nielsen number is hard to compute in general. To compute the Nielsen number, Jiang related it to the Reidemeister number R(f ) of the induced homomorphism f  :  1(X)    1(X) when X is a lens space or an H-space (Jian type space). For such spaces, either N(f) = 0 or N(f) = R(f) the Reidemeister number of f  and if R(f) =   then N(f) = 0 which implies that f is homotopic to a fixed point free map. This is a review article to discuss how these numbers are related in fixed point theory.","PeriodicalId":237333,"journal":{"name":"3C TIC: Cuadernos de desarrollo aplicados a las TIC","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reidemeister Number in Lefschetz Fixed point theory\",\"authors\":\"T. Mubeena\",\"doi\":\"10.17993/3ctic.2022.112.61-70\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several interesting numbers such as the homotopy invariant numbers the Lefschets number L(f), the Nielsen number N(f), fixed point index i(X, f,U) and the Reidemeister number R(f) play important roles in the study of fixed point theorems. The Nielsen number gives more geometric information about fixed points than other numbers. However the Nielsen number is hard to compute in general. To compute the Nielsen number, Jiang related it to the Reidemeister number R(f ) of the induced homomorphism f  :  1(X)    1(X) when X is a lens space or an H-space (Jian type space). For such spaces, either N(f) = 0 or N(f) = R(f) the Reidemeister number of f  and if R(f) =   then N(f) = 0 which implies that f is homotopic to a fixed point free map. This is a review article to discuss how these numbers are related in fixed point theory.\",\"PeriodicalId\":237333,\"journal\":{\"name\":\"3C TIC: Cuadernos de desarrollo aplicados a las TIC\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3C TIC: Cuadernos de desarrollo aplicados a las TIC\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17993/3ctic.2022.112.61-70\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3C TIC: Cuadernos de desarrollo aplicados a las TIC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17993/3ctic.2022.112.61-70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

几个有趣的数,如同伦不变数Lefschets数L(f)、Nielsen数N(f)、不动点指数i(X, f,U)和Reidemeister数R(f),在不动点定理的研究中起着重要的作用。尼尔森数字比其他数字提供了更多关于固定点的几何信息。然而,尼尔森的数据通常很难计算。为了计算Nielsen数,Jiang将其与诱导同态f: 1(X) 1(X)的Reidemeister数R(f)联系起来,当X是透镜空间或h -空间(Jian型空间)时。对于这样的空间,N(f) = 0或N(f) = R(f)是f的Reidemeister数,如果R(f) =则N(f) = 0,这意味着f是一个不动点自由映射的同伦。这是一篇综述文章,讨论这些数在不动点理论中的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reidemeister Number in Lefschetz Fixed point theory
Several interesting numbers such as the homotopy invariant numbers the Lefschets number L(f), the Nielsen number N(f), fixed point index i(X, f,U) and the Reidemeister number R(f) play important roles in the study of fixed point theorems. The Nielsen number gives more geometric information about fixed points than other numbers. However the Nielsen number is hard to compute in general. To compute the Nielsen number, Jiang related it to the Reidemeister number R(f ) of the induced homomorphism f  :  1(X)    1(X) when X is a lens space or an H-space (Jian type space). For such spaces, either N(f) = 0 or N(f) = R(f) the Reidemeister number of f  and if R(f) =   then N(f) = 0 which implies that f is homotopic to a fixed point free map. This is a review article to discuss how these numbers are related in fixed point theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信