M. Campovecchio, R. Hilal, B. Le Bras, M. Lajugie, J. Obregon
{"title":"应用于2-18 GHz GaAs芯片的分布式功率放大器的大信号设计标准,可获得高功率密度性能","authors":"M. Campovecchio, R. Hilal, B. Le Bras, M. Lajugie, J. Obregon","doi":"10.1109/INMMC.1994.512528","DOIUrl":null,"url":null,"abstract":"A suitable and efficient design method of distributed power amplifiers, based on the optimum FET load requirement for power operation, is proposed in this paper. The analytical determination of the gate and drain line characteristic admittances provides both the initial values and right directions for an optimum design. The best tradeoffs between wide band and high power operation have been investigated. To validate the method, a FET amplifier demonstrator with a gate periphery of 1.2 mm has been manufactured at the Texas Instruments foundry. The MMIC amplifier demonstrated state of the art power density performance of 340 mW/mm over the 2-18 GHz band associated with 14.2% power added efficiency, 26.5% drain efficiency and 26.1 dBm output power at 1 dB compression in CW operation.","PeriodicalId":164713,"journal":{"name":"Third International Workshop on Integrated Nonlinear Microwave and Millimeterwave Circuits","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large signal design criteria of distributed power amplifiers applied to a 2-18 GHz GaAs chip yielding high power density performances\",\"authors\":\"M. Campovecchio, R. Hilal, B. Le Bras, M. Lajugie, J. Obregon\",\"doi\":\"10.1109/INMMC.1994.512528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A suitable and efficient design method of distributed power amplifiers, based on the optimum FET load requirement for power operation, is proposed in this paper. The analytical determination of the gate and drain line characteristic admittances provides both the initial values and right directions for an optimum design. The best tradeoffs between wide band and high power operation have been investigated. To validate the method, a FET amplifier demonstrator with a gate periphery of 1.2 mm has been manufactured at the Texas Instruments foundry. The MMIC amplifier demonstrated state of the art power density performance of 340 mW/mm over the 2-18 GHz band associated with 14.2% power added efficiency, 26.5% drain efficiency and 26.1 dBm output power at 1 dB compression in CW operation.\",\"PeriodicalId\":164713,\"journal\":{\"name\":\"Third International Workshop on Integrated Nonlinear Microwave and Millimeterwave Circuits\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Third International Workshop on Integrated Nonlinear Microwave and Millimeterwave Circuits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INMMC.1994.512528\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Workshop on Integrated Nonlinear Microwave and Millimeterwave Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INMMC.1994.512528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Large signal design criteria of distributed power amplifiers applied to a 2-18 GHz GaAs chip yielding high power density performances
A suitable and efficient design method of distributed power amplifiers, based on the optimum FET load requirement for power operation, is proposed in this paper. The analytical determination of the gate and drain line characteristic admittances provides both the initial values and right directions for an optimum design. The best tradeoffs between wide band and high power operation have been investigated. To validate the method, a FET amplifier demonstrator with a gate periphery of 1.2 mm has been manufactured at the Texas Instruments foundry. The MMIC amplifier demonstrated state of the art power density performance of 340 mW/mm over the 2-18 GHz band associated with 14.2% power added efficiency, 26.5% drain efficiency and 26.1 dBm output power at 1 dB compression in CW operation.