Hui Lu, Disong Wang, Xixin Wu, Zhiyong Wu, Xunying Liu, Helen M. Meng
{"title":"基于ß-VAE的单次跨语言语音转换解纠缠语音表示学习","authors":"Hui Lu, Disong Wang, Xixin Wu, Zhiyong Wu, Xunying Liu, Helen M. Meng","doi":"10.1109/SLT54892.2023.10022787","DOIUrl":null,"url":null,"abstract":"We propose an unsupervised learning method to disentangle speech into content representation and speaker identity representation. We apply this method to the challenging one-shot cross-lingual voice conversion task to demonstrate the effectiveness of the disentanglement. Inspired by ß- VAE, we introduce a learning objective that balances between the information captured by the content and speaker representations. In addition, the inductive biases from the architectural design and the training dataset further encourage the desired disentanglement. Both objective and subjective evaluations show the effectiveness of the proposed method in speech disentanglement and in one-shot cross-lingual voice conversion.","PeriodicalId":352002,"journal":{"name":"2022 IEEE Spoken Language Technology Workshop (SLT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Disentangled Speech Representation Learning for One-Shot Cross-Lingual Voice Conversion Using ß-VAE\",\"authors\":\"Hui Lu, Disong Wang, Xixin Wu, Zhiyong Wu, Xunying Liu, Helen M. Meng\",\"doi\":\"10.1109/SLT54892.2023.10022787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an unsupervised learning method to disentangle speech into content representation and speaker identity representation. We apply this method to the challenging one-shot cross-lingual voice conversion task to demonstrate the effectiveness of the disentanglement. Inspired by ß- VAE, we introduce a learning objective that balances between the information captured by the content and speaker representations. In addition, the inductive biases from the architectural design and the training dataset further encourage the desired disentanglement. Both objective and subjective evaluations show the effectiveness of the proposed method in speech disentanglement and in one-shot cross-lingual voice conversion.\",\"PeriodicalId\":352002,\"journal\":{\"name\":\"2022 IEEE Spoken Language Technology Workshop (SLT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Spoken Language Technology Workshop (SLT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT54892.2023.10022787\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT54892.2023.10022787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Disentangled Speech Representation Learning for One-Shot Cross-Lingual Voice Conversion Using ß-VAE
We propose an unsupervised learning method to disentangle speech into content representation and speaker identity representation. We apply this method to the challenging one-shot cross-lingual voice conversion task to demonstrate the effectiveness of the disentanglement. Inspired by ß- VAE, we introduce a learning objective that balances between the information captured by the content and speaker representations. In addition, the inductive biases from the architectural design and the training dataset further encourage the desired disentanglement. Both objective and subjective evaluations show the effectiveness of the proposed method in speech disentanglement and in one-shot cross-lingual voice conversion.