软件健康管理技术的应用

N. Mahadevan, A. Dubey, G. Karsai
{"title":"软件健康管理技术的应用","authors":"N. Mahadevan, A. Dubey, G. Karsai","doi":"10.1145/1988008.1988010","DOIUrl":null,"url":null,"abstract":"The growing complexity of software used in large-scale, safety critical cyber-physical systems makes it increasingly difficult to expose and hence correct all potential defects. There is a need to augment the existing fault tolerance methodologies with new approaches that address latent software defects exposed at runtime. This paper describes an approach that borrows and adapts traditional 'System Health Management' techniques to improve software dependability through simple formal specification of runtime monitoring, diagnosis, and mitigation strategies. The two-level approach to health management at the component and system level is demonstrated on a simulated case study of an Air Data Inertial Reference Unit (ADIRU). An ADIRU was categorized as the primary failure source for the in-flight upset caused in the Malaysian Air flight 124 over Perth, Australia in 2005.","PeriodicalId":168314,"journal":{"name":"International Symposium on Software Engineering for Adaptive and Self-Managing Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Application of software health management techniques\",\"authors\":\"N. Mahadevan, A. Dubey, G. Karsai\",\"doi\":\"10.1145/1988008.1988010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The growing complexity of software used in large-scale, safety critical cyber-physical systems makes it increasingly difficult to expose and hence correct all potential defects. There is a need to augment the existing fault tolerance methodologies with new approaches that address latent software defects exposed at runtime. This paper describes an approach that borrows and adapts traditional 'System Health Management' techniques to improve software dependability through simple formal specification of runtime monitoring, diagnosis, and mitigation strategies. The two-level approach to health management at the component and system level is demonstrated on a simulated case study of an Air Data Inertial Reference Unit (ADIRU). An ADIRU was categorized as the primary failure source for the in-flight upset caused in the Malaysian Air flight 124 over Perth, Australia in 2005.\",\"PeriodicalId\":168314,\"journal\":{\"name\":\"International Symposium on Software Engineering for Adaptive and Self-Managing Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Software Engineering for Adaptive and Self-Managing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1988008.1988010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Software Engineering for Adaptive and Self-Managing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1988008.1988010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

在大规模、安全关键的网络物理系统中使用的软件越来越复杂,这使得它越来越难以暴露并因此纠正所有潜在的缺陷。有必要用新的方法来增强现有的容错方法,以解决在运行时暴露的潜在软件缺陷。本文描述了一种方法,该方法借用并调整了传统的“系统健康管理”技术,通过对运行时监控、诊断和缓解策略的简单正式规范来提高软件的可靠性。在空气数据惯性参考单元(ADIRU)的模拟案例研究中,演示了组件和系统级别的两级健康管理方法。ADIRU被认为是2005年马来西亚航空124号航班在澳大利亚珀斯上空发生的飞机失事的主要故障来源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of software health management techniques
The growing complexity of software used in large-scale, safety critical cyber-physical systems makes it increasingly difficult to expose and hence correct all potential defects. There is a need to augment the existing fault tolerance methodologies with new approaches that address latent software defects exposed at runtime. This paper describes an approach that borrows and adapts traditional 'System Health Management' techniques to improve software dependability through simple formal specification of runtime monitoring, diagnosis, and mitigation strategies. The two-level approach to health management at the component and system level is demonstrated on a simulated case study of an Air Data Inertial Reference Unit (ADIRU). An ADIRU was categorized as the primary failure source for the in-flight upset caused in the Malaysian Air flight 124 over Perth, Australia in 2005.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信