Koustav Rudra, Ashish Sharma, Niloy Ganguly, Muhammad Imran
{"title":"疫情期间对微博信息进行分类","authors":"Koustav Rudra, Ashish Sharma, Niloy Ganguly, Muhammad Imran","doi":"10.1145/3079452.3079491","DOIUrl":null,"url":null,"abstract":"At the outbreak of an epidemic, affected communities want/need to get aware of disease symptoms, preventive measures, and treatment strategies. On the other hand, health organizations try to get situational updates to assess the severity of the outbreak, known affected cases, and other details. Recent emergence of social media platforms such as Twitter provide convenient ways and fast access to disseminate and consume information to/from a wider audience. Research studies have shown potential of this online information to address information needs of concerned authorities during outbreaks, epidemics, and pandemics. In this work, we target three communities (i) people who are not affected yet and are looking for prevention-related information (ii) people who are affected and looking for treatment-related information, and (iii) health organizations like WHO, who are interested in gaining situational awareness to make timely decisions. We use Twitter data from two recent outbreaks (Ebola and MERS) to built an automatic classification approach using low level lexical features which are useful to categorize tweets into different disease-related categories.","PeriodicalId":245682,"journal":{"name":"Proceedings of the 2017 International Conference on Digital Health","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Classifying Information from Microblogs during Epidemics\",\"authors\":\"Koustav Rudra, Ashish Sharma, Niloy Ganguly, Muhammad Imran\",\"doi\":\"10.1145/3079452.3079491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At the outbreak of an epidemic, affected communities want/need to get aware of disease symptoms, preventive measures, and treatment strategies. On the other hand, health organizations try to get situational updates to assess the severity of the outbreak, known affected cases, and other details. Recent emergence of social media platforms such as Twitter provide convenient ways and fast access to disseminate and consume information to/from a wider audience. Research studies have shown potential of this online information to address information needs of concerned authorities during outbreaks, epidemics, and pandemics. In this work, we target three communities (i) people who are not affected yet and are looking for prevention-related information (ii) people who are affected and looking for treatment-related information, and (iii) health organizations like WHO, who are interested in gaining situational awareness to make timely decisions. We use Twitter data from two recent outbreaks (Ebola and MERS) to built an automatic classification approach using low level lexical features which are useful to categorize tweets into different disease-related categories.\",\"PeriodicalId\":245682,\"journal\":{\"name\":\"Proceedings of the 2017 International Conference on Digital Health\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 International Conference on Digital Health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3079452.3079491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 International Conference on Digital Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3079452.3079491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Classifying Information from Microblogs during Epidemics
At the outbreak of an epidemic, affected communities want/need to get aware of disease symptoms, preventive measures, and treatment strategies. On the other hand, health organizations try to get situational updates to assess the severity of the outbreak, known affected cases, and other details. Recent emergence of social media platforms such as Twitter provide convenient ways and fast access to disseminate and consume information to/from a wider audience. Research studies have shown potential of this online information to address information needs of concerned authorities during outbreaks, epidemics, and pandemics. In this work, we target three communities (i) people who are not affected yet and are looking for prevention-related information (ii) people who are affected and looking for treatment-related information, and (iii) health organizations like WHO, who are interested in gaining situational awareness to make timely decisions. We use Twitter data from two recent outbreaks (Ebola and MERS) to built an automatic classification approach using low level lexical features which are useful to categorize tweets into different disease-related categories.