具有不确定材料参数的达西流动随机Galerkin公式的约基求解器

M. Béres
{"title":"具有不确定材料参数的达西流动随机Galerkin公式的约基求解器","authors":"M. Béres","doi":"10.21136/panm.2022.02","DOIUrl":null,"url":null,"abstract":"In this contribution, we present a solution to the stochastic Galerkin (SG) matrix equations coming from the Darcy flow problem with uncertain material coefficients in the separable form. The SG system of equations is kept in the compressed tensor form and its solution is a very challenging task. Here, we present the reduced basis (RB) method as a solver which looks for a low-rank representation of the solution. The construction of the RB consists of iterative expanding of the basis using Monte Carlo sampling. We discuss the setting of the sampling procedure and an efficient solution of multiple similar systems emerging during the sampling procedure using deflation. We conclude with a demonstration of the use of SG solution for forward uncertainty quantification.","PeriodicalId":197168,"journal":{"name":"Programs and Algorithms of Numerical Mathematics 21","volume":"161 9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reduced basis solver for stochastic Galerkin formulation of Darcy flow with uncertain material parameters\",\"authors\":\"M. Béres\",\"doi\":\"10.21136/panm.2022.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this contribution, we present a solution to the stochastic Galerkin (SG) matrix equations coming from the Darcy flow problem with uncertain material coefficients in the separable form. The SG system of equations is kept in the compressed tensor form and its solution is a very challenging task. Here, we present the reduced basis (RB) method as a solver which looks for a low-rank representation of the solution. The construction of the RB consists of iterative expanding of the basis using Monte Carlo sampling. We discuss the setting of the sampling procedure and an efficient solution of multiple similar systems emerging during the sampling procedure using deflation. We conclude with a demonstration of the use of SG solution for forward uncertainty quantification.\",\"PeriodicalId\":197168,\"journal\":{\"name\":\"Programs and Algorithms of Numerical Mathematics 21\",\"volume\":\"161 9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Programs and Algorithms of Numerical Mathematics 21\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21136/panm.2022.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Programs and Algorithms of Numerical Mathematics 21","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21136/panm.2022.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这篇贡献中,我们提出了一种解随机伽辽金(SG)矩阵方程来自具有不确定物质系数的可分形式的达西流动问题。SG方程组保持在压缩张量形式,其解是一项非常具有挑战性的任务。在这里,我们提出了简化基(RB)方法作为求解器,它寻找解的低秩表示。RB的构造包括使用蒙特卡罗采样对基进行迭代展开。我们讨论了抽样过程的设置和在抽样过程中出现的多个相似系统的有效解。最后,我们演示了使用SG溶液进行前向不确定度量化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reduced basis solver for stochastic Galerkin formulation of Darcy flow with uncertain material parameters
In this contribution, we present a solution to the stochastic Galerkin (SG) matrix equations coming from the Darcy flow problem with uncertain material coefficients in the separable form. The SG system of equations is kept in the compressed tensor form and its solution is a very challenging task. Here, we present the reduced basis (RB) method as a solver which looks for a low-rank representation of the solution. The construction of the RB consists of iterative expanding of the basis using Monte Carlo sampling. We discuss the setting of the sampling procedure and an efficient solution of multiple similar systems emerging during the sampling procedure using deflation. We conclude with a demonstration of the use of SG solution for forward uncertainty quantification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信