超立方体多处理器上的快速哈特利变换

Xinming Lin, Tony F. Chart, W. Karplus
{"title":"超立方体多处理器上的快速哈特利变换","authors":"Xinming Lin, Tony F. Chart, W. Karplus","doi":"10.1145/63047.63101","DOIUrl":null,"url":null,"abstract":"The Fast Hartley Transform is a promising alternative to the Fast Fourier Transform when the processed data are real numbers. The hypercube implementation of the FHT is largely dependent on the way the computation is partitioned. A partitioning algorithm is presented which generates evenly-loaded tasks on each node and demands only a regular communication topology — the Hartley graph. Mapping from the Hartley graph to the Gray graph (binary n-cube) is straightforward, since the Hartley graph has a similar structure as the Gray graph. However, the communication is not always between the nearest neighbors and thus may take some extra time. Moreover, the slowness of the communication in the presently available architectures imposes a limitation on the speedup when a large number of processors are used.","PeriodicalId":299435,"journal":{"name":"Conference on Hypercube Concurrent Computers and Applications","volume":"20 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"The fast Hartley transform on the hypercube multiprocessors\",\"authors\":\"Xinming Lin, Tony F. Chart, W. Karplus\",\"doi\":\"10.1145/63047.63101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Fast Hartley Transform is a promising alternative to the Fast Fourier Transform when the processed data are real numbers. The hypercube implementation of the FHT is largely dependent on the way the computation is partitioned. A partitioning algorithm is presented which generates evenly-loaded tasks on each node and demands only a regular communication topology — the Hartley graph. Mapping from the Hartley graph to the Gray graph (binary n-cube) is straightforward, since the Hartley graph has a similar structure as the Gray graph. However, the communication is not always between the nearest neighbors and thus may take some extra time. Moreover, the slowness of the communication in the presently available architectures imposes a limitation on the speedup when a large number of processors are used.\",\"PeriodicalId\":299435,\"journal\":{\"name\":\"Conference on Hypercube Concurrent Computers and Applications\",\"volume\":\"20 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Hypercube Concurrent Computers and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/63047.63101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Hypercube Concurrent Computers and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/63047.63101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

当处理的数据是实数时,快速哈特利变换是快速傅立叶变换的一个很有前途的替代方案。FHT的超立方体实现在很大程度上依赖于计算分区的方式。提出了一种分配算法,该算法在每个节点上生成负载均匀的任务,并且只需要一个规则的通信拓扑- Hartley图。从Hartley图到Gray图(二进制n-cube)的映射是直接的,因为Hartley图具有与Gray图相似的结构。然而,通信并不总是在最近的邻居之间进行,因此可能需要一些额外的时间。此外,当使用大量处理器时,当前可用架构中的通信速度较慢限制了加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The fast Hartley transform on the hypercube multiprocessors
The Fast Hartley Transform is a promising alternative to the Fast Fourier Transform when the processed data are real numbers. The hypercube implementation of the FHT is largely dependent on the way the computation is partitioned. A partitioning algorithm is presented which generates evenly-loaded tasks on each node and demands only a regular communication topology — the Hartley graph. Mapping from the Hartley graph to the Gray graph (binary n-cube) is straightforward, since the Hartley graph has a similar structure as the Gray graph. However, the communication is not always between the nearest neighbors and thus may take some extra time. Moreover, the slowness of the communication in the presently available architectures imposes a limitation on the speedup when a large number of processors are used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信