基于模糊逻辑推理的物联网网络异常流量检测

S. Ageev, Yan Kopchak, Igor Kotenko, I. Saenko
{"title":"基于模糊逻辑推理的物联网网络异常流量检测","authors":"S. Ageev, Yan Kopchak, Igor Kotenko, I. Saenko","doi":"10.1109/SCM.2015.7190394","DOIUrl":null,"url":null,"abstract":"The paper proposes a traffic anomaly detection technique which could be implemented in networks of the Internet of things. It is based on using fuzzy logical inference applied to the stationary Poisson or self-similar traffic peculiar to networks of the Internet of things. The algorithms of the modified stochastic approximation and \"sliding window\", included in the traffic anomaly detection technique, are suggested. Results of an experimental assessment of the technique are discussed.","PeriodicalId":106868,"journal":{"name":"2015 XVIII International Conference on Soft Computing and Measurements (SCM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Abnormal traffic detection in networks of the Internet of things based on fuzzy logical inference\",\"authors\":\"S. Ageev, Yan Kopchak, Igor Kotenko, I. Saenko\",\"doi\":\"10.1109/SCM.2015.7190394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper proposes a traffic anomaly detection technique which could be implemented in networks of the Internet of things. It is based on using fuzzy logical inference applied to the stationary Poisson or self-similar traffic peculiar to networks of the Internet of things. The algorithms of the modified stochastic approximation and \\\"sliding window\\\", included in the traffic anomaly detection technique, are suggested. Results of an experimental assessment of the technique are discussed.\",\"PeriodicalId\":106868,\"journal\":{\"name\":\"2015 XVIII International Conference on Soft Computing and Measurements (SCM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 XVIII International Conference on Soft Computing and Measurements (SCM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCM.2015.7190394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 XVIII International Conference on Soft Computing and Measurements (SCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCM.2015.7190394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

提出了一种可在物联网网络中实现的流量异常检测技术。它是基于应用于物联网网络特有的平稳泊松或自相似流量的模糊逻辑推理。提出了交通异常检测技术中的改进随机逼近和“滑动窗口”算法。讨论了该技术的实验评估结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Abnormal traffic detection in networks of the Internet of things based on fuzzy logical inference
The paper proposes a traffic anomaly detection technique which could be implemented in networks of the Internet of things. It is based on using fuzzy logical inference applied to the stationary Poisson or self-similar traffic peculiar to networks of the Internet of things. The algorithms of the modified stochastic approximation and "sliding window", included in the traffic anomaly detection technique, are suggested. Results of an experimental assessment of the technique are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信