基于集成经验模态分解和支持向量数据描述的故障检测方法

Yang Wang, D. Ling, Weidong Yang, Bo Tao, Ying Zheng
{"title":"基于集成经验模态分解和支持向量数据描述的故障检测方法","authors":"Yang Wang, D. Ling, Weidong Yang, Bo Tao, Ying Zheng","doi":"10.1109/SAFEPROCESS45799.2019.9213442","DOIUrl":null,"url":null,"abstract":"In order for the fault detection of processes with noise and nonlinearity, a method based on Ensemble Empirical Mode Decomposition (EEMD) and Support Vector Data Description (SVDD) is proposed. In this work, EEMD-based denoising method is utilized to remove the noise from the original dataset. The SVDD model is then developed to handle the nonlinear data for fault detection. The proposed method contains three steps. Firstly, the original dataset is decomposed into a series of Intrinsic Mode Functions (IMFs) by the EEMD method. Each IMF characterizes the corresponding scale information of the data. Secondly, the original data is reconstructed using the partial reconstruction denoising method. Only the relevant IMFs which mostly contain useful information are retained, and the IMFs that primarily carry noise are discarded. The optimal number of relevant IMFs is selected based on the Signal-to-Noise Ratio (SNR). Finally, the SVDD model is constructed on the reconstructed data to detect faults. The effectiveness of the proposed method is demonstrated by a numerical example. The results show the proposed method performs better compared with other existing methods.","PeriodicalId":353946,"journal":{"name":"2019 CAA Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Fault Detection Method with Ensemble Empirical Mode Decomposition and Support Vector Data Description\",\"authors\":\"Yang Wang, D. Ling, Weidong Yang, Bo Tao, Ying Zheng\",\"doi\":\"10.1109/SAFEPROCESS45799.2019.9213442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order for the fault detection of processes with noise and nonlinearity, a method based on Ensemble Empirical Mode Decomposition (EEMD) and Support Vector Data Description (SVDD) is proposed. In this work, EEMD-based denoising method is utilized to remove the noise from the original dataset. The SVDD model is then developed to handle the nonlinear data for fault detection. The proposed method contains three steps. Firstly, the original dataset is decomposed into a series of Intrinsic Mode Functions (IMFs) by the EEMD method. Each IMF characterizes the corresponding scale information of the data. Secondly, the original data is reconstructed using the partial reconstruction denoising method. Only the relevant IMFs which mostly contain useful information are retained, and the IMFs that primarily carry noise are discarded. The optimal number of relevant IMFs is selected based on the Signal-to-Noise Ratio (SNR). Finally, the SVDD model is constructed on the reconstructed data to detect faults. The effectiveness of the proposed method is demonstrated by a numerical example. The results show the proposed method performs better compared with other existing methods.\",\"PeriodicalId\":353946,\"journal\":{\"name\":\"2019 CAA Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 CAA Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAFEPROCESS45799.2019.9213442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 CAA Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAFEPROCESS45799.2019.9213442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了对含有噪声和非线性的过程进行故障检测,提出了一种基于集成经验模态分解(EEMD)和支持向量数据描述(SVDD)的故障检测方法。在这项工作中,利用基于eemd的去噪方法去除原始数据集中的噪声。然后建立SVDD模型来处理非线性数据以进行故障检测。该方法分为三个步骤。首先,采用EEMD方法将原始数据集分解为一系列的内禀模态函数(IMFs);每个货币基金组织都描述了数据的相应比额表信息。其次,采用局部重构去噪方法对原始数据进行重构;只保留主要包含有用信息的相关分量,丢弃主要携带噪声的分量。根据信噪比(SNR)选择相关imf的最优数量。最后,在重构数据基础上构建SVDD模型进行故障检测。通过算例验证了该方法的有效性。结果表明,与现有方法相比,该方法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Fault Detection Method with Ensemble Empirical Mode Decomposition and Support Vector Data Description
In order for the fault detection of processes with noise and nonlinearity, a method based on Ensemble Empirical Mode Decomposition (EEMD) and Support Vector Data Description (SVDD) is proposed. In this work, EEMD-based denoising method is utilized to remove the noise from the original dataset. The SVDD model is then developed to handle the nonlinear data for fault detection. The proposed method contains three steps. Firstly, the original dataset is decomposed into a series of Intrinsic Mode Functions (IMFs) by the EEMD method. Each IMF characterizes the corresponding scale information of the data. Secondly, the original data is reconstructed using the partial reconstruction denoising method. Only the relevant IMFs which mostly contain useful information are retained, and the IMFs that primarily carry noise are discarded. The optimal number of relevant IMFs is selected based on the Signal-to-Noise Ratio (SNR). Finally, the SVDD model is constructed on the reconstructed data to detect faults. The effectiveness of the proposed method is demonstrated by a numerical example. The results show the proposed method performs better compared with other existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信